データ処理において、配列は基本的データ構造だが、動的メモリ確保の説明で述べたように、基本の配列では大きさを変更することができない。これ以外にも、配列は途中にデータを挿入・削除を行う場合、の処理時間を伴う。以下にその問題点を整理し、その解決策であるリスト構造について説明する。
配列の利点と欠点
今までデータの保存には、配列を使ってきたが、配列は添字で場所を指定すれば、その場所のデータを簡単に取り出すことができる。配列には苦手な処理がある。例えば、配列の中から目的のデータを高速に探す方式として、2分探索法を用いる。
int find( int array[] , int left , int right , int key ) { // データは left から right-1までに入っているとする。 while( left < right ) { int mid = (left + right) / 2 ; // 中央の場所 if ( array[ mid ] == key ) return mid ; // 見つかった else if ( array[ mid ] > key ) right = mid ; // 左半分にある else left = mid + 1 ; // 右半分にある } return -1 ; // 見つからない }
しかし、配列の中に新たに要素を追加しようとするならば、データは昇順に並んでいる必要があることから、以下のようになるだろう。
void entry( int array[] , int* psize , int key ) { // データを入れるべき場所を探す処理 for( int i = 0 ; i < *psize ; i++ ) // O(N) の処理だけど、 if ( array[ i ] > key ) // O(log N) でも書けるけど break ; // 単純に記載する。 if ( i < *psize ) { // 要素を1つ後ろにずらす処理 for( int j = *psize ; j > i ; j-- ) // O(N)の処理 array[ j ] = array[ j - 1 ] ; array[ i ] = key ; } else { array[ *psize ] = key ; } (*psize)++ ; }
これで判るように、データを配列に追加する場合、途中にデータを入れる際にデータを後ろにずらす処理が発生する。
この例は、データを追加する場合であったが、不要となったデータを取り除く場合にも、データの場所の移動が必要である。
順序が重要なデータ列で途中へのデータ挿入削除
例えば、アパート入居者に回覧板を回すことを考える。この中で、入居者が増えたり・減ったりした場合、どうすれば良いか考える。
通常は、自分の所に回覧板が回ってきたら、次の入居者の部屋番号さえわかっていれば、回覧板を回すことができる。
101 102 103 104 105 106 [ 105 | 106 | -1 | 102 | 104 | 103 ]
このように次のデータの場所という概念を使うと、データの順序を持って扱うことができる。
struct LIST { int data ; int next ; } ; struct LIST array[] = { /*0*/ { 11 , 2 } , /*1*/ { 67 , 3 } , // 末尾にデータ34を加える /*2*/ { 23 , 4 } , // { 23 , 5 } , /*3*/ { 89 , -1 } , // 末尾データの目印 /*4*/ { 45 , 1 } , /*5*/ { 0 , 0 } , // { 34 , 4 } , } ; for( int idx = 0 ; idx >= 0 ; idx = array[ idx ].next ) { printf( "%d¥n" , array[ idx ].data ) ; }
この方法を取れば、途中にデータ入れたり、抜いたりする場合に、データの移動を伴わない。
しかし、配列をベースにしているため、配列の上限サイズを超えて格納することはできない。