ホーム » スタッフ » 斉藤徹 » 講義録 » 情報構造論

情報構造論」カテゴリーアーカイブ

2019年4月
« 3月    
 123456
78910111213
14151617181920
21222324252627
282930  

最近の投稿(電子情報)

アーカイブ

カテゴリー

処理時間のオーダーの練習問題

2分探索法の処理時間の見積もり

コンピュータで2分探索法で、データ100件で10[μsec]かかったとする。
データ10000件なら何[sec]かかるか?

解答

2分探索法なので、処理時間はO(logN) であり、T(N) = Tα+TβN で表される。

T(100) =10μsec = Tβ✕ log 100

となる。ここで、logの底は、底変換の公式を使うと、底の違いはTβ に含めて考えればいいので、今回は10を底にして考える。

10μsec = Tβ ✕ log10100=Tβ✕2

Tβ=5μsec

よって、

T(10000) = 5μsec✕log1010000=20μsec

処理時間の式をオーダ表記

の処理時間を要するアルゴリズムを、オーダー記法で書くとどうなるか?

解答

ここで問題となるのは、 との値が、Nが巨大な値の時にどっちが大きいかが問題となる。

そこで、それぞれの値を分子分母にして N→∞で、∞に拡散するか、0に収束するかを判定すればいい。

ここで、ロピタルの定理より、分子分母をそれぞれ微分すると、

よって、分子の方が巨大な値になるので、この処理時間は、で表せる。

ループ処理時間とオーダー記法と再帰

先週に、単純繰り返し処理の時間分析をやったので、次のステップに。

2分探索法の処理時間

データを探す処理において、単純検索より速い方法ということで、2分探索法の処理速度見積もりを行う。

// 2分探索法 O(log N)
int a[ 1000 ] = { 対象となるデータ } ;
int size = N ;  // データ数 N
int L = 0 ;     // L=下限のデータの場所
int R = size ;  // R=上限のデータ+1の場所
while( L != R ) {
   int M = (L + R) / 2 ;  // 計算は整数型で行われることに注意
   if ( a[M] == key )     // 見つかった
      break ;
   else if ( a[M] < key ) // |L         |M.         |R
      L = M + 1 ;         // |----------|-+---------|
   else                   // |L---------|M|
      R = M ;             //              |M+1------|R
}

上記のようなプログラムの場合、処理に要する時T(N)は、

 # Mは繰り返し回数

処理は、対象となるデータ件数が繰り返し毎に半分となり、対象データ件数が1件になれば処理が終わる。このことから、

となることから、 の関係が成り立つ。よって、は、以下のように表せる。

単純なソート(最大選択法)の処理時間

次に、並べ替え処理の処理時間について考える。

int a[ 1000 ] = { 対象となるデータ } ;
int size = N ;

for( int i = 0 ; i < size - 1 ; i++ ) {
    int tmp ;
    // i..size-1 の範囲で一番大きいデータの場所を探す
    int m = i ;
    for( int j = i + 1 ; j < size ; j++ ) {
        if ( a[j] > a[m] )
            m = j ;
    }
    // 一番大きいデータを先頭に移動
    tmp = a[i] ;
    a[i] = a[m] ;
    a[m] = tmp ;
}

このプログラムの処理時間T(N)は… (参考 数列の和の公式)

となる。

オーダー記法

ここまでのアルゴリズムをまとめると、処理時間に大きく影響する部分は、最後の項の部分であり、特にその項の係数は、コンピュータの処理性能に影響を受けるが、アルゴリズムの優劣を考える場合は、それぞれ、 の部分の方が重要である。

単純サーチ
2分探索法
最大選択法

そこで、アルゴリズムの優劣を議論する場合は、この処理時間の見積もりに最も影響する項で、コンピュータの性能によって決まる係数を除いた部分を抽出した式で表現する。これをオーダー記法と言う。

単純サーチ オーダーNのアルゴリズム
2分探索法 オーダー log N のアルゴリズム
最大選択法 オーダー N2 のアルゴリズム

練習問題

  1. コンピュータで2分探索法で、データ100件で10[μsec]かかったとする。
    データ10000件なら何[sec]かかるか?
    (ヒント: 底変換の公式)
  2. の処理時間を要するアルゴリズムを、オーダー記法で書くとどうなるか?また、このようなアルゴリズムの例を答えよ。
  3. の処理時間を要するアルゴリズムを、オーダー記法で書くとどうなるか?
    (ヒント: ロピタルの定理)

再帰呼び出しの予習

若干、時間が余ったので、再帰呼出しと簡単な処理の例を説明する。

最初に定番の階乗(fact)

次に、フィボナッチ数列の場合

2019年度情報構造論ガイダンス

情報構造論のガイダンス

プログラムを評価する3つのポイント

この授業で恒例の、プログラムを作る場合に何に気をつけてプログラムを作成するかを聞いてみた。今年は、以下に示す3要素をうまく答えてくれたかな。

  • プログラムの速度
  • プログラムのわかり易さ
  • メモリの使用量

プログラムを作る場合、この3要素がトレードオフの関係にある。プログラムの速度を優先すると、プログラムが分かり難くなったり、メモリを大量浪費するものだったりする。

メモリの使用量の影響

メモリを大量に使用すると、どういった影響がでるのか? OSの機能を知らないと、メモリ(主記憶)を使い果たしたら、プログラムが動かないと思うかもしれないけど、最近のOSは仮想メモリ機能があるため、主記憶がメモリが足りなければ待機状態のプロセスのメモリを補助記憶に保存することで、プログラムを動かすことはできる。(仮想記憶)

しかし、プロセスが切り替わる度に、補助記憶への読み書きが発生するため、処理性能は低下する。(スワッピング)

ソフトウェアとアルゴリズムとプログラム

用語として、ソフトウェア、アルゴリズム、プログラムという表現があるが、この違いは何か?

  • アルゴリズム – 計算手順の考え方。
  • プログラム – アルゴリズムを特定のプログラム言語によって記述したもの。
  • ソフトウェア – プログラムと、その処理に必要なデータ。(日本語を変換するプログラムは、日本語の辞書データが無いと動かない)

トレードオフ関係をプログラムで確認

例えば、配列の中から、目的データを探すプログラムの場合、最も簡単なプログラムは以下の方法であろう。

// ((case-1))
// 単純サーチ O(N)
#define SIZE 1024
int a[ SIZE ] ; // 配列
int size ;      // 実際のデータ数(Nとする)
int key ;       // 探すデータ
for( int i = 0 ; i < size ; i++ )
   if ( a[i] == key )
      break ;

しかし、もっと早く探したいのであれば、2分探索法を用いるだろう。でも、このプログラムは、case-1 のプログラムよりは分かり難い。(速度⇔わかり易さ)

// ((case-2))
// 2分探索法
int L=0 , R=size ; // プログラムは複雑になった 
while( L != R ) {
   int M = (L + R) / 2 ;
   if ( a[M] == key )
      break ;
   else if ( a[M] < key )
      L = M + 1 ;
   else
      R = M ;
}

でももっと速いプログラムとしたければ、大量のメモリを使えば一発でデータを探せる。(速度⇔メモリ使用量)

// ((case-3))
// 添字がデータ O(1)
// 探すデータが電話番号 272925 のような 6 桁ならば
int a[ 1000000 ] ;
a[ 272925 ] = 272925 ;
// 処理速度はクソ速いけど、メモリは大量消費

良いプログラムを作るとは

プログラムを作る時には、メモリが大量に使えるのなら、速いものを使えばいい。だけど実際には、そのシステムには限られた予算があるだろう。

実際には、限られる予算から、メモリやCPUが決まり、その会社の人員やら経験やらで、プログラム開発に使える時間がきまる。プログラムをデザインするとは、限られた条件の中で、適切な速度のコンピュータ、適切な量のメモリでコンピュータを用意し、限られた納期の中でシステムを完成させることである。

動作時間の予測

ここで、プログラムの実行時間を細かく分析してみる。例えば、前節のcase-1の単純サーチをフローチャートで表せば、以下のように表せるだろう。フローチャートの各部の実行回数は、途中で見つかる場合があるので、最小の場合・最大の場合を考え平均をとってみる。また、その1つ1つの処理は、コンピュータで機械語で動くわけだから、その実行回数の繰り返した分の処理時間を要する。この時間を とする。

この検索処理全体の時間 を考えると、平均時間とすれば、以下のように表せるだろう。

ここで例題

この単純サーチのプログラムを動かしてみたら、データ件数N=1000で、5μ秒かかったとする。では、N=10000であれば、何秒かかるだろうか?

感のいい学生であれば、直感的に 50μ秒 と答えるだろうが、では、Tβ,Tα は何秒だったのだろうか? 上記のT(N)=Tα+N ✕ Tβ に当てはめると、N=1000,T(N)=5μ秒の条件では、連立方程式は解けない。

ここで一番のポイントは、大量のデータ処理を行うのが普通だから、N が小さな値の場合はあまり考えない。N が巨大な値であれば、Tαは、1000Tβに比べれば微々たる値という点である。よって

で考えれば良い。これであれば、T(1000)=5μ秒=Tβ×1000 よって、Tβ=5n秒となる。この結果、T(10000)=Tβ×10000=50μ秒 となる。

オブジェクト指向と演習

データ構造を扱うプログラムの書き方を説明してきたので、それらを便利に書くためのオブジェクト指向の入り口を紹介する。

データ指向のプログラム記述

名前と年齢のデータを扱うプログラムを書く時、私なら以下のようなプログラムを作成する。

このプログラムの書き方では、saitohというデータにset_NameAge() , print_NameAge() を呼び出していて、データに対して処理を加えるという雰囲気がでている。このようにプログラムを書くと、saitoh というデータに対して命令するイメージとなり、擬人化してset,printしろ…って命令しているように見える。

// 名前と年齢の構造体 
struct NameAge {
   char name[ 20 ] ;
   int  age ;
} ;

// NameAgeを初期化する関数
void set_NameAge( struct NameAge* p , char s[] , int a ) {
   strcpy( p->name , s ) ;
   p->age = a ;
}

// NameAgeを表示する関数
void print_NameAge( struct NameAge* p ) {
   printf( "%s %d¥n" , p->name , p->age ) ;
}

void main() {
   struct NameAge saitoh ;

   set_NameAge( &saitoh, "t-saitoh" , 53 ) ;
   print_NameAge( &saitoh ) ;

   // NameAge の中身を知らなくても、
   // set_NameAge(),print_NameAge() の中身を見なくても、
   // saitoh を set して print する....という雰囲気は伝わるよね!!  
}

このプログラムでは、例えば、データに誕生日も覚えたいという改良を加えるとしても、main の前のデータ構造と関数の部分は色々と書き換えることになるだろうけど、main の内部はあまり変わらないだろう。こういう状態なので、プログラムを作成するときには、データ構造とそれを扱う関数を記述する人と、データ構造を使う人(main内部を書く人)と、分業ができるようになる。

隠蔽化

このような記述では、データ構造の中身を知らなくても、main で、setしてprintして…という処理の雰囲気は分かる。さらに、set_NameAge()とか、print_NameAge() の処理の中身を知らなくても、設定するとか表示するとか…は予想できる。

これは、NameAge というデータをブラックボックス化して捉えていると見れる。データ構造の中身を知らなくてもプログラムを理解できることは、データ構造の隠蔽化という。また、関数の中身を知らなくても理解できることは、手続きの隠蔽化という。

オブジェクト指向プログラミング

前述のように、プログラムを書く時には、データ構造とそのデータを扱う関数を一緒に開発するのが一般的である。オブジェクト指向プログラミングでは、データ構造その関数(メソッドと呼ぶ)をまとめてクラスと呼ぶ。

class NameAge {
private:
   // データ構造の宣言
   char name[ 20 ] ;
   int  age ;

public:
   // メソッドの定義
   void set( char s[] , int a ) { // 初期化関数
      strcpy( name , s ) ;
      age = a ;
   }
   void print() {                 // 表示関数
      printf( "%s %d¥n" , name , age ) ;
   }
} ;

void main() {
   NameAge saitoh ;
   saitoh.set( "t-saitoh" , 53 ) ;
   saitoh.print() ;
}

このプログラムでは、saitoh というデータ(具体的なデータオブジェクトと呼ぶ)に対して、set() , print() を呼び出している。

オブジェクト指向では、データに対して private を指定すると、クラス以外でその要素を扱うことができなくなる。これにより、クラスを設計する人と、クラスを使う人を明確に分けることができ、クラスを使う人が、クラス内部の変数を勝手に触ることを禁止できる。

プログラムを記述する時には、データ件数を数える時に、カウンタの初期化を忘れて動かないといった、初期化忘れも問題となる。オブジェクト指向のプログラム言語では、こういうミスを減らすために、データ初期化専用の関数(コンストラクタ)を定義することで、初期化忘れを防ぐことができる。

// コンストラクタを使う例
class NameAge {
   // 略
public:
   NameAge( char s[] , int a ) { // データ初期化専用の関数
      strcpy( name , s ) ;       //  コンストラクタと呼ぶ
      age = a ;
   }
   // 略
} ;
void main() {
   NameAge saitoh( "t-saitoh" , 53 ) ; // オブジェクトの宣言と初期化をまとめて記述できる。
   saitoh.print() ;
}

演習(ハッシュ法)

ハッシュ法のプログラム(オープンアドレス法もしくはチェイン法)を用いて、
(1)名前と電話番号,(2)名前と住所,(3)名前と誕生日について、名前をキーとして検索するプログラムを作成せよ。

原則として「出席番号 % 3 + 1」の番号のテーマに取り組むこと。

レポートを作成する際には、ハッシュ関数を変更してどういった変化があるか確認せよ。
ハッシュサイズは、10〜20件程度で良い。

動的メモリ確保(malloc()とfreelist)

C言語では、動的メモリ領域をどのように管理していくのか解説する。

局所変数とスタック

局所変数は、関数に入った時に作られるメモリ領域であり、関数の処理を抜けると自動的に開放されるデータ領域である。

関数の中で関数が呼び出されると、スタックには戻り番地情報を保存し、関数に移動する。最初の処理で局所変数領域が確保され、関数を終えると局所変数は開放される。
この局所変数の確保と開放は、最後に確保された領域を最初に開放される(Last In First Out)ことから、スタック上に保存される。

baz()の中で、「*((&c)+4) = 123 ;」を実行したら、bar()のxを書き換えられるかも…

動的メモリ領域とフリーリスト

動的なメモリ領域(ヒープ領域)は、malloc()関数で処理用のメモリを借りfree()関数で使わなくなったメモリを返却する。

この返却されたメモリ領域は、改めて malloc() が呼び出されたときに再利用を行う。この再利用するメモリ領域は、簡単に扱えるようにリスト構造にして保存する。この free された再利用候補のリスト構造は、free_list と呼ばれる。

mallocが一定サイズの場合

free_list の考え方を説明するために、malloc() でのメモリサイズが一定として説明を行う。

malloc() が呼び出される度に、free_list の先頭から貸し出すメモリを取り出し(a=malloc(),b=malloc(),c=malloc()まで)、free() が呼び出されると、返却されたメモリは、free_list の先頭につないでおく。

任意サイズのメモリ確保の場合

この図の一番下の赤部分は、次のメモリブロックへのポインタとブロックサイズの大きさが20byteの場合の例。

malloc() で、指定されたサイズのものが、free_list の中にあれば、それを使う。

丁度いいサイズが無い場合は、それより大きいメモリブロックの後半を切り分けて、貸し出す。

この例の最後の処理では、20byte,60byte,40byte,50byteが併合された例。併合後のブロックサイズは、すこしいい加減に書いてある。

使用されていたメモリブロックが free() で返却された場合は、free_list につないでいく。ただし、単純にリストに繋ぐだけであれば、malloc(),free() を繰り返すと、小さなメモリブロックばかりになってしまい、大きいメモリのmalloc()ができなくなる。

そこで、free() で返却される際には、隣り合うメモリブロックと併合できるかを確認し、大きなメモリブロックになるような処理を行う。

また、隣り合うメモリブロックが併合できるかの判定が簡単になるように、free_listにつなぐ際は、次のメモリブロックへのポインタは、昇順となるように並べる。

一般的には、上記のようにmalloc(),free()を行うが(K&Rのmallocアルゴリズム)、mallocのサイズが小さい場合には併合処理などは隣接確認などが手間がかかる。
そこで、最初に説明した一定サイズのmalloc()の手法で、8byte専用のfreelist,16byte専用のfreelist,32byte専用のfreelistのように2Nbyteのfreelistで管理する。10byteといった中途半端なサイズの時は、それより大きい16byteのfreelistを使う。(dlmallocのアルゴリズム)

ヒープメモリの断片化

ヒープメモリの malloc() , free() を繰り返すと、最悪、以下の図の様に、使用中領域(赤)とfreeされた未使用領域(黒)が交互に並ぶ状態が発生するかもしれない。この場合、全体の未使用領域の合計では十分なサイズでも、小さなメモリブロックばかりとなって、大きなメモリブロックを要求されても十分な大きさのメモリが見つからない状態が発生する場合がある。

この状態をヒープメモリの断片化といい、使用しづらい小さなメモリブロックはヒープホールと呼ばれる。

(補足) 断片化

断片化というと、OSではハードディスクの断片化(フラグメンテーション)を思い浮かべるかもしれない。ハードディスクの断片化とは、ファイル領域の割り当てとファイルの削除を繰り返すことで、ファイルのセクタが不連続となり、アクセス効率が悪くなる現象。OSによっては、ファイル実体の位置を動かすことで断片化を改善できる。以下の図のようにフラグメンテーションを防ぐための実体の移動を行う最適化はデフラグと呼ばれる。

上記の図では、上の青の図が断片化が発生している事例で、a1→a2,a2→a3の時にヘッド移動(シーク時間)が発生する。下の赤の図のように、デフラグ処理を施すことでシーク時間が減らせる。

参照カウンタ法とガベージコレクタ

共有のあるデータの取扱の問題

リスト構造で集合計算おこなう場合の和集合を求める処理を考える。

struct List* join( struct List* a , struct List* b )
{  struct List* ans = b ;
   for( ; a != NULL ; a = a->next )
      if ( !find( ans , a->data ) )
         ans = cons( a->data , ans ) ;
   return ans ;
}
void list_del( struct List* p )
{                            // ダメなプログラムの例
   while( p != NULL ) {      // for( ; p != NULL ; p = p->next )
      struct List* d = p ;   //    free( p ) ;
      p = p->next ;
      free( d ) ;
   }    
}
void main() {
   // リストの生成
   struct List* a = cons( 1 , cons( 2 , cons( 3 , NULL ) ) ) ;
   struct List* b = cons( 2 , cons( 3 , cons( 4 , NULL ) ) ) ;
   struct List* c = join( a , b ) ; // c = { 1, 1, 2, 3 }
                                     //          ~~~~~~~ ここは b
   // a,b,cを使った処理

   // 処理が終わったのでa,b,cを捨てる
   list_del( c ) ;
   list_del( b ) ;
   list_del( a ) ; // list_del(c)ですでに消えている
}                  // このためメモリー参照エラー発生

このようなプログラムでは、下の図のようなデータ構造が生成されるが、処理が終わってリスト廃棄を行おうとすると、bの先のデータは廃棄済みなのに、list_del(c)の実行時に、その領域を触ろうとして異常が発生する。

参照カウンタ法

上記の問題は、b の先のリストが c の一部とデータを共有しているために発生する。この解決方法として簡単な方法では、参照カウンタ法が用いられる。

参照カウンタ法では、データを参照するポインタの数をデータと共に保存する。

  • データの中にポインタ数を覚える参照カウンタを設け、データを生成した時に1とする。
  • 処理の中で共有が発生すると、参照カウンタをカウントアップする。
  • データを捨てる際には、参照カウンタをカウントダウンし、0になったら本当にそのデータを消す。
struct List {
   int          refc ; // 参照カウンタ
   int          data ; // データ
   struct List* next ; // 次のポインタ
} ;

void list_del( strcut List* p ) {  // 再帰で全廃棄
   if ( p != NULL
        && --(p->refc) <= 0 ) {    // 参照カウンタを減らし
      list_del( p->next ) ;        // 0ならば本当に消す
      free( p ) ;
   }
}

ただし、参照カウンタ法は、循環リストではカウンタが0にならないので、取扱いが苦手。

参照カウンタ法が用いられている事例をあげよ。

ガベージコレクタ

では、循環リストの発生するようなデータで、共有が発生するような場合には、どのようにデータを管理すれば良いだろうか?
最も簡単な方法は、処理が終わっても、使い終わったメモリを返却しない、方法である。ただし、このままでは、メモリを使い切ってしまう。

そこで、廃棄処理をしないまま、ゴミだらけになってしまったメモリ空間を再利用するのが、ガベージコレクタである。
ガベージコレクタは、貸し出すメモリ空間が無くなった時に起動され、

  1. すべてのメモリ空間に、「不要」の目印をつける。(mark処理)
  2. 変数に代入されているデータが参照している先のデータは「使用中」の目印をつける。(mark処理)
  3. その後、「不要」の目印がついている領域は、だれも使っていないので回収する。(sweep処理)


この方式は、マークアンドスイープ法と呼ばれる。ただし、このようなガベージコレクタが動く場合は、他の処理ができず処理が中断されるので、コンピュータの操作性という点では問題となる。

最近のプログラミング言語では、参照カウンタとガベージコレクタを取り混ぜた方式でメモリ管理をする機能が組み込まれている。このようなシステムでは、局所変数のような生成され関数終了といったすぐに不要となる領域は、ガベージコレクタで管理し、大域変数のような長期間保管するデータはガベージコレクタで管理される。

 

ハッシュ法(チェイン法)

前回説明のハッシュ法(オープンアドレス法)は、ハッシュ衝突が発生した場合、別のハッシュ値を求めそこに格納する。配列で実装した場合であれば、ハッシュ表以上の データ件数を保存することはできない。

チェイン法

チェイン法は、同じハッシュ値のデータをグループ化して保存する方法。 同じハッシュ値のデータは、リスト構造とするのが一般的。

#define SIZE 100
int hash_func( int ph ) {
   return ph % SIZE ;
}
struct PhoneNameList {
   int phone ;
   char name[ 20 ] ;
   struct PhoneNameList* next ;
} ;
struct PhoneNameList* table[ SIZE ] ; // NULLで初期化

struct PhoneNameList* cons( int ph ,
                            char* nm ,
                            struct PhoneNameList* nx ) {
   struct PhoneNameList* ans ;
   ans = (struct PhoneNameList*)malloc(
                      sizeof( struct PhoneNameList ) ) ;
   if ( ans != NULL ) {
      ans->phone = ph ;
      strcpy( ans->name , nm ) ;
      ans->next = nx ;
   }
   return ans ;
}

void entry( int phone , char* name ) {
   int idx = hash_func( phone ) ;
   hash[ idx ] = cons( phone , name , hash[ idx ] ) ;
}
char* search( int phone ) {
   int idx = hash_func( phone ) ;
   struct PhoneNameList* p ;
   for( p = hash[ idx ] ; p != NULL ; p = p->next ) {
      if ( p->phone == phone )
         return p->name ;
   }
   return NULL ;
}

文字列のハッシュ値

ここまでで説明した事例は、電話番号をキーとするものであり、余りを求めるだけといったような簡単な計算で、ハッシュ値が求められた。しかし、一般的には文字列といったような名前から、ハッシュ値が欲しいことが普通だろう。

ハッシュ値は、簡単な計算で、見た目デタラメな値が求まればいい。 (ただしく言えば、ハッシュ値の出現確率が極力一様であること)。一見規則性が解らない値として、文字であれば文字コードが考えられる。複数の文字で、これらの文字コードを加えるなどの計算をすれば、 偏りの少ない値を取り出すことができる。

int hash_func( char s[] ) {
   int sum = 0 ;
   for( int i = 0 ; s[i] != '¥0' ; i++ ) {
      sum = sum + s[i] ;
   }
   return sum % SIZE ;
}

文字列順で異なる値となるように

前述のハッシュ関数は、”ABC”さんと”CBA”さんでは、同じハッシュ値が求まってしまう。文字列順で異なる値が求まるように改良してみる。

int hash_func( char s[] ) {
   int sum = 0 ;
   for( int i = 0 ; s[i] != '¥0' ; i++ ) {
      sum = sum*2 + s[i] ;
      // sum = (sum * 小さい素数 + s[i]) % 大きい素数 ;
   }
   return sum % SIZE ;
}

ハッシュ法(オープンアドレス法)

ハッシュ法

ここまでの授業では、配列(データ検索は、登録順保存ならO(N)、2分探索ならO(log N)となる)、単純リスト(データ検索(シーケンシャルアクセスしかできないのでO(N)となる)、2分探索木( O(log N) ) といった手法を説明してきた。しかし、もっと高速なデータ検索はできないのであろうか?

究極のシンプルなやり方(メモリの無駄)

最も簡単なアルゴリズムは、電話番号から名前を求めるようなデータベースであれば、電話番号自身を配列添え字番号とする方法がある。しかしながら、この方法は大量のメモリを必要とする。

// メモリ無駄遣いな超高速方法
struct PhoneName {
   int  phone ;
   char name[ 20 ] ;
} ;

// 電話番号は6桁とする。
struct PhoneName table[ 1000000 ] ;

// 配列に電話番号と名前を保存
void entry( int phone , name ) {
   table[ phone ].phone = phone ;
   strcpy( table[ phone ].name , name ) ; 
}

// 電話番号から名前を調べる
char* search( int phone ) {
   return table[ phone ].name ;
}

しかし、50人程度のデータであれば、電話番号の末尾2桁を取り出した場合、同じ数値の人がいることは少ないであろう。であれば、電話番号の末尾2桁の値を配列の添え字番号として、データを保存すれば、配列サイズは100件となり、メモリの無駄を減らすことができる。

ハッシュ法

先に述べたように、データの一部を取り出して、それを配列の添え字番号として保存することで、高速にデータを読み書きできるようにするアルゴリズムはハッシュ法と呼ばれる。データを格納する表をハッシュ表、データの一部を取り出した添え字番号はハッシュ値、ハッシュ値を得るための関数がハッシュ関数と呼ばれる。

// ハッシュ衝突を考えないハッシュ法

#define HASH_SIZE 100 ;
struct PhoneName table[ HASH_SIZE ] ;

// ハッシュ関数
int hash_func( int phone ) {
   return phone % HASH_SIZE ;
}

// 配列に電話番号と名前を保存
void entry( int phone , name ) {
   int idx = hash_func( phone ) ;
   table[ idx ].phone = phone ;
   strcpy( table[ idx ].name , name ) ; 
}

// 電話番号から名前を調べる
char* search( int phone ) {
   int idx = hash_func( phone ) ;
   return table[ idx ].name ;
}

ただし、上記のプログラムでは、電話番号の末尾2桁が偶然他の人と同じになることを考慮していない。
例えば、データ件数が100件あれば、同じ値の人も出てくるであろう。このように、異なるデータなのに同じハッシュ値が求まることを、ハッシュ衝突と呼ぶ。

たとえ話で言うなら、100個の椅子が連番付きで並んでいて、自分の電話番号末尾2桁の場所に座ろうとしたら、先に座っている人がいるような状態である。このような状態で、あなたなら何処に座るだろうか?

ハッシュ関数に求められる特性

ハッシュ関数は、できる限り同じような値が求まるものは、ハッシュ衝突が多発するので、避けなければならない。例えば、6桁の電話番号の先頭2桁であれば、電話番号の局番であり、同じ学校の人でデータを覚えたら、同じ地域の人でハッシュ衝突が発生してしまう。また、ハッシュ値を計算するのに、配列の空き場所を一つ一つ探すような方式では、データ件数に比例した時間がかかり、高速なアルゴリズムでなくなってしまう。このことから、ハッシュ関数には以下のような特徴が必要となる。

  • デタラメのように見える値であること。(同じ値になりにくい)
  • 簡単な計算で求まること。
  • 同じデータであれば、同じハッシュ値が求まること。

オープンアドレス法

先の椅子取りゲームの例え話であれば、先に座っている人がいた場合、最も簡単な椅子に座る方法は、隣が空いているか確認すればいい。これをプログラムにしてみると、以下のようになる。このハッシュ法は、求まったアドレスの場所にこだわらない方式でオープンアドレス法と呼ばれる。

// オープンアドレス法
// table[] は帯域変数で0で初期化されているものとする。

// 配列に電話番号と名前を保存
void entry( int phone , name ) {
   int idx = hash_func( phone ) ;

   while( table[ idx ].phone != 0 )
      idx = (idx + 1) % HASH_SIZE ;
   }
   table[ idx ].phone = phone ;
   strcpy( table[ idx ].name , name ) ;
}

// 電話番号から名前を調べる
char* search( int phone ) {
   int idx = hash_func( phone ) ;

   while( table[ idx ].phone != 0 ) {
      if ( table[ idx ].phone == phone )
         return table[ idx ].name ;
      idx = (idx + 1) % HASH_SIZE ;
   }
   return NULL ; // 見つからなかった
}

注意:このプログラムは、ハッシュ表すべてにデータが埋まった場合、無限ループとなるので、実際にはもう少し改良が必要である。

情報構造論・後期中間テスト結果の講評

情報構造論のテストが終わり、採点中。今回は、各ページごとに採点中。

  1. 設問1のイメージ図は、ほぼ全員が正解。簡単過ぎたか。
    設問2でprintf(“\n(%d)\n”,i) で、未だに¥と\が同じことを知らないのか!?!?
  2. 設問1の正規表現は、それなりに不正解が多い。
    設問2は、インタプリタ,コンパイラの欠点を述べるとき、「時間がかかる」という表現では「1命令毎に時間がかかる」のか「ソースコードから機械語が生成されてプログラムが動きだすまでの時間がかかる」(ビルド時間)のか不明確なものは、✕とする。
    「コンパイラはエラーが見つけにくい」との回答があったけど、インタプリタは未実行の命令部にバグが残る可能性があるので、どんなエラーのことなのか明記してなければ✕とする。
  3. 採点前
  4. 採点前
  5. 採点前
  6. 採点前

B木とデータベース

2分探索木の考え方を拡張したもので、B木がある。

B木の構造

2分木では、データの増減で木の組換えの発生頻度が高い。そこで、1つのノード内に複数のデータを一定数覚える方法をとる。B木では、位数=Nに対し、最大2N個のデータd0..d2N-1と、2N+1本のポインタp0..p2Nから構成される。piの先には、di-1<x<di を満たすデータが入った B木のノードを配置する。ただし、データの充填率を下げないようにするため、データは最小でもN個、最大で2N個を保存する。

B木からデータの検索

データを探す場合は、ノード内のデータ diの中から探し、見つからない場合は、ポインタの先のデータを探す。位数がある程度大きい場合、ノード内の検索は2分探索法が使用できる。また、1つのノード内の検索が終われば、探索するデータ件数は、1/N〜1/2Nとなることから、指数的に対象件数が減っていく。よって、検索時間のオーダは、O(logN) となる。

B木へのデータの追加

B木にデータを追加する場合は、ノード内に空きがあれば、単純にデータの追加を行う。ノード内のデータが2N個を越える場合は、以下のような処理を行う。

ノード内のデータと追加データを並べ、その中央値を選ぶ。この中央値より大きいデータは、新たにつくられたノードに移す。中央値のデータは上のノードに追加処理を行う。このような方法を取ることで、2分木のような木の偏りが作られにくい構造となるようにする。

データを削除する場合も同様に、データ件数がN個を下回る場合は、隣接するノードからデータを取ってくることで、N個を下回らないようにする。

B木とデータベース

このB木の構造は、一般的にデータベースのデータを保存するために広く利用されている。

データベースシステムでは、データを効率よく保存するだけでなく、データの一貫性が保たれるように作られている。
例えば、データベースのシステムが途中でクラッシュした場合でも、データ更新履歴の情報を元にデータを元に戻し、データを再投入して復旧できなければならない。データを複数の所からアクセスした場合に、その順序から変な値にならないように、排他制御も行ってくれる。

データベースで最も使われているシステムは、データすべてを表形式で扱うリレーショナル・データベースである。

((リレーショナル・データベースの例))
STUDENT                             RESULT
ID   | name     | grade | course    ID   | subject | point
-----+----------+-------+--------   -----+---------+-------
1001 | t-saitoh |  5    | EI        1001 | math    | 83
1002 | sakamoto |  4    | E         1001 | english | 65
1003 | aoyama   |  4    | EI        1002 | english | 90

((SQLの例))
select STUDENT.name , RESULT.subject , RESULT.point --射影--
   from STUDENT , RESULT                            --結合--
   where STUDENT.ID == RESULT.ID    -- 串刺し --     --選択--
         and RESULT.point >= 60 ;

((上記SQLをC言語で書いた場合))
for( st = 0 ; st < 3 ; st++ )                   // 結合
   for( re = 0 ; re < 3 ; re++ )
      if ( student[ st ].ID == result[ re ].ID  // 選択
        && result[ re ].point >= 60 )
           printf( "%s %s %d" ,                 // 射影
                   student[ st ].name ,
                   result[ re ].subject ,
                   result[ re ].point ) ;

B+木

データベースの処理では、目的のデータを O(log N) で見つける以外にも、全データに対する処理も重要である。この場合、全てのデータに対する処理では、単純なB木では再帰呼び出しが必要となる。しかし、他の表でも再帰処理を伴うと、プログラムは複雑になってしまう。

そこで、B木のデータを横方向に並べて処理を行う場合に、その処理が簡単になるように B+木が用いられる。
この方法では、末端のノードは、隣接するノードへのポインタを持つ。

Wikipedia B+木 より引用