ホーム » スタッフ » 斉藤徹 » 講義録 » 情報構造論

情報構造論」カテゴリーアーカイブ

2019年12月
« 11月    
1234567
891011121314
15161718192021
22232425262728
293031  

最近の投稿(電子情報)

アーカイブ

カテゴリー

講義録に動くサンプルコードを併記

長男からプログラミングの授業の質問が LINE で流れてきて、大学の先生の資料を覗き見。その大学の課題ではサンプルコードの配布がしっかりしている。私の講義録でもサンプルコードは掲載しているけど、プロジェクタで掲示しながら授業をするため、#include 行を省略したり、main を void 宣言したりと、そのまま入れても動かない。

そこで、ダウンロードすれば「そのまま動くサンプルコード」を積極的に入れるようにしてみよう。

まずは、後期の情報構造論の半分ほどのサンプルコードを動く様に加筆し、テキストファイルへのリンクを埋め込んだ。

データベースについても、学内向けのSQLite3を使った実験環境にて動作ができるように、若干の改良を加え、リンクを埋め込んだ。

前期分は、来年度の授業の中で修正していこう。

B木とデータベース

2分探索木の考え方を拡張したもので、B木がある。

B木の構造

2分木では、データの増減で木の組換えの発生頻度が高い。そこで、1つのノード内に複数のデータを一定数覚える方法をとる。B木では、位数=Nに対し、最大2N個のデータd0..d2N-1と、2N+1本のポインタp0..p2Nから構成される。piの先には、di-1<x<di を満たすデータが入った B木のノードを配置する。ただし、データの充填率を下げないようにするため、データは最小でもN個、最大で2N個を保存する。

B木からデータの検索

データを探す場合は、ノード内のデータ diの中から探し、見つからない場合は、ポインタの先のデータを探す。位数がある程度大きい場合、ノード内の検索は2分探索法が使用できる。また、1つのノード内の検索が終われば、探索するデータ件数は、1/N〜1/2Nとなることから、指数的に対象件数が減っていく。よって、検索時間のオーダは、O(logN) となる。

B木へのデータの追加

B木にデータを追加する場合は、ノード内に空きがあれば、単純にデータの追加を行う。ノード内のデータが2N個を越える場合は、以下のような処理を行う。

ノード内のデータと追加データを並べ、その中央値を選ぶ。この中央値より大きいデータは、新たにつくられたノードに移す。中央値のデータは上のノードに追加処理を行う。このような方法を取ることで、2分木のような木の偏りが作られにくい構造となるようにする。

データを削除する場合も同様に、データ件数がN個を下回る場合は、隣接するノードからデータを取ってくることで、N個を下回らないようにする。

B木とデータベース

このB木の構造は、一般的にデータベースのデータを保存するために広く利用されている。

データベースシステムでは、データを効率よく保存するだけでなく、データの一貫性が保たれるように作られている。
例えば、データベースのシステムが途中でクラッシュした場合でも、データ更新履歴の情報を元にデータを元に戻し、データを再投入して復旧できなければならない。データを複数の所からアクセスした場合に、その順序から変な値にならないように、排他制御も行ってくれる。

データベースで最も使われているシステムは、データすべてを表形式で扱うリレーショナル・データベースである。

((リレーショナル・データベースの例))
STUDENT                             RESULT
ID   | name     | grade | course    ID   | subject | point
-----+----------+-------+--------   -----+---------+-------
1001 | t-saitoh |  5    | EI        1001 | math    | 83
1002 | sakamoto |  4    | E         1001 | english | 65
1003 | aoyama   |  4    | EI        1002 | english | 90

((SQLの例))
select STUDENT.name, RESULT.subject, RESULT.point --射影--
   from STUDENT , RESULT                          --結合--
   where STUDENT.ID == RESULT.ID    -- 串刺し --   --選択--
         and RESULT.point >= 60 ;

((上記SQLをC言語で書いた場合))
for( st = 0 ; st < 3 ; st++ )                   // 結合
   for( re = 0 ; re < 3 ; re++ )
      if ( student[ st ].ID == result[ re ].ID  // 選択
        && result[ re ].point >= 60 )
           printf( "%s %s %d" ,                 // 射影
                   student[ st ].name ,
                   result[ re ].subject ,
                   result[ re ].point ) ;

B+木

データベースの処理では、目的のデータを O(log N) で見つける以外にも、全データに対する処理も重要である。この場合、全てのデータに対する処理では、単純なB木では再帰呼び出しが必要となる。しかし、他の表でも再帰処理を伴うと、プログラムは複雑になってしまう。

そこで、B木のデータを横方向に並べて処理を行う場合に、その処理が簡単になるように B+木が用いられる。
この方法では、末端のノードは、隣接するノードへのポインタを持つ。

ポインタの先には何がある?

学生さんから「ポインタの先には何があるの?」との質問があった。

私が「そのポインタの型のデータ」と答えると、さらに「ポインタはメモリの場所。でもメモリには int や char や double といった色んなデータがある。そんな色々なデータの中からデータを取り出すんだから、そこにはどんなデータが入っているのか判らないとデータを取り出せないんじゃ?」と疑問をぶつけてきた。

なるほど、本当の疑問点が見えてきた。

最近のPython等の動的型付け言語の場合

# ポインタの質問だから、C言語の場合を答えればいいんだけど…

最近の Python , PHP といった変数が型を持たない「動的型付け言語」は、まさに質問の通り。データを取り出すためには、型の情報が必要。こういう言語は、基本型以外のデータはすべて参照型(要はポインタ)なので、変数の指し示す先には型情報とそのデータがペアで保存されているので、その型情報をみてデータを取り出している。

C言語の場合(静的型付け言語)

C言語では、ポインタは単なるメモリの場所を表すだけ。ポインタの先にはデータがある。(だからデータしかないって!)

メモリからデータを読み出すときに、int 4byte で取り出すのか、 double 8byte で取り出すかどうやってわかるの?と思うかもしれないけど、そのポインタの変数がどういう型へのポインタで定義されているかプログラムを読めばわかる。それに従って取り出せばいい。こういう言語は「静的型付け言語」という。

となると「じゃあ int のデータを char として読めるの?」と思うかもしれないけど「読めるよ!」

#include <stdio.h>
int main() {
   // 型を偽って参照するのは間違いの元なので型のチェックは厳格。
   //   だから 以下の様なヤバイことをする時は、型キャスト で
   //   だますことが定番。
   int x = 0x41424344 ; 
   char* p = (char*)( &x ) ; // int型の場所をchar型にする 
   printf( "%c\n" , *p ) ;

   // int型は4バイト、次のアドレスは?
   int y[] = {
      0x11223344 , 0x12345678 ,
   } ;
   printf( "%p %p\n" , y , y + 1 ) ; 
   int *r = y + 1 ;
   printf( "%04d\n" , *r ) ; // 12345678 が表示

   // intの1byteとなりをintとして読める?
   int *q = (int*)((char*)( &y ) + 1) ;
   printf( "%04x\n" , *q ) ; // 処理系によってはメモリエラー

   // ポインタは番地を表す数値だよね?
   //  0x100番地のデータは読める?
   int* s = (int*)0x100 ;
   printf( "%d\n" , *s ) ; // Segmentation Fault.

   return 0 ;
}

さて、上記のプログラムをみてどう思った?

C言語って自由奔放で、やばくね? — ポインタなんか使えるからだよね、そう思うんなら Java 使え。ポインタなんか使えないから。

でも型宣言が面倒なんだよねPython, Ruby などの動的型付けな言語使え。

でも変数参照でいちいち型情報しらべる言語って遅くね? — あるよ。「型推論」。型を明記しなくても、プログラムの文脈から型を推論してくれる静的型付け言語。Go , Swift , Kotlin…といった、今 流行りのプログラム言語がソレ。最新のJavaやC++も型推論機能が使えるようになってるよ。んで、今話題の中学生が作ったプログラム言語 Blawn も、型推論の言語!すげーな。

演算子と2分木による式の表現

2分木の応用として、式の表現を行うけどその前に…

逆ポーランド記法

一般的に 1*2 + 3*4 と記載すると、数学的には演算子の優先順位を考慮して、(1*2)+(3*4) のように乗算を先に行う。このような優先順位を表現する時に、()を使わない方法として、逆ポーランド記法がある。

演算子の書き方には、前置記法、中置記法、後置記法があり、後置記法は、「2と3を掛ける、それに1を加える」と捉えると、日本語の処理と似ている。

中置記法 1+2*3
前置記法 +,1,*,2,3
後置記法 1,2,3,*,+

後置記法は、一般的に逆ポーランド記法(Reverse Polish Notation)とも呼ばれ、式を機械語の命令に置き換える際に役立つ。

理解度確認

以下の式を指定された書き方で表現せよ。

逆ポーランド記法 1,2,*,3,4,*,+ を中置記法で表現せよ。
中置記法 (1+2)*3-4*5 を逆ポーランド記法で表現せよ。

以前の情報処理技術者試験では、スタックの概念の理解の例題として、逆ポーランド記法への変換アルゴリズムのプログラム作成が出題されることが多かったが、最近は出題されることはなくなってきた。

逆ポーランド式の実行

この逆ポーランド記法で書かれた式から結果を求めるプログラムは以下のように記述できる。このプログラムでは式を簡単にするため、数値は1桁の数字のみとする。

// 単純な配列を用いたスタック
int stack[ 10 ] ;
int sp = 0 ;

void push( int x ) {
   stack[ sp++ ] = x ;
}
int pop() {
   return stack[ --sp ] ;
}

// 逆ポーランド記法の計算
int rpn( char* p ) {
   for( ; *p != '\0' ; p++ ) {
      if ( isdigit( *p ) ) {
         //         ~~(A)
         // 数字はスタックに積む
         push( *p - '0' ) ;
      } else if ( *p == '+' ) {
         // 演算子+は上部2つを取出し
         int r = pop() ;
         int l = pop() ;
         // 加算結果をスタックに積む
         push( l + r ) ;
      } else if ( *p == '*' ) {
         // 演算子*は上部2つを取出し
         int r = pop() ;
         int l = pop() ;
         // 乗算結果をスタックに積む
         push( l * r ) ;
      }//~~~~~~~~~~~~~(B)
   }
   // 最終結果がスタックに残る
   return pop() ;
}

void main() {
   printf( "%d\n" , rpn( "123*+" ) ) ;
}

逆ポーランド記法の式の実行は、上記のようにスタックを用いると簡単にできる。このようなスタックと簡単な命令で複雑な処理を行う方法はスタックマシンと呼ばれる。Java のバイトコードインタプリタもこのようなスタックマシンである。

Cプログラママニア向けの考察

上記のプログラムでは、int r=pop();…push(l+r); で記載しているが、

push( pop() + pop() ) ;

とは移植性を考慮して書かなかった。理由を述べよ。

最初の関数電卓

初期の関数電卓では複雑な数式を計算する際に、演算子の優先順位を扱うのが困難であった。このため、HP社の関数電卓では、式の入力が RPN を用いていた。(HP-10Cシリーズ)

2項演算と構文木

演算子を含む式が与えられたとして、それを保存する場合、演算式の2分木で扱うと都合が良い。

   +
  / \
 1   *
    / \
   2   3

演算子の木のノードで、末端は数値であることに注目し、右枝・左枝がNULLなら数値(data部にはその数値)、それ以外は演算子(data部には演算子の文字コード)として扱うとして…

struct Tree {
   int  data ;
   struct Tree* left ;
   struct Tree* right ;
} ;
struct Tree* tree_int( int x ) // 数値のノード
{
   struct Tree* n ;
   n = (struct Tree*)malloc( sizeof( struct Tree ) ) ;
   if ( n != NULL ) {
      n->data = x ;
      n->left = n->right = NULL ;
   }
   return n ;
}
struct Tree* tree_op( int op , // 演算子のノード
                   struct Tree* l , struct Tree* r ) {
   struct Tree* n ;
   n = (struct Tree*)malloc( sizeof( struct Tree ) ) ;
   if ( n != NULL ) {     // ~~~~~~~~~~~~~~~~~~~~~(C)
      n->data  = op ;
      n->left  = l ;
      n->right = r ;
   }
   return n ;
}
// 与えられた演算子の木を計算する関数
int eval( struct Tree* p ) {
   if ( p->left == NULL && p->right == NULL ) {
      // 数値のノードは値を返す
      return p->data ;
   } else {
      // 演算子のノードは、左辺値,右辺値を求め
      // その計算結果を返す
      switch( p->data ) {
      case '+' : return eval( p->left ) + eval( p->right ) ;
      case '*' : return eval( p->left ) * eval( p->right ) ;
      }              // ~~~~~~~~~~~~~~~(D)      ~~~~~~~~(E)
   }
}

void main() {
   struct Tree* exp =  // 1+(2*3) の構文木を生成
      tree_op( '+' ,
               tree_int( 1 ) ,
               tree_op( '*' ,
                        tree_int( 2 ) , tree_int( 3 ) ) ) ;
   printf( "%d¥n" , eval( exp ) ) ;
}

理解度確認

  • 上記プログラム中の(A),(B),(C),(D)の型を答えよ。

const char*s, char* const sの違い

専攻科実験のサンプルコードで、警告がでたことについて質問があったので説明。

(( サンプルコード sample.cxx ))
#include <stdio.h>
void foo( char* s ) {
  printf( "%s¥n" , s ) ;
}
int main() {
  foo( "ABC" ) ;
  return 0 ;
}

(( コンパイル時の警告 ))
$ g++ sample.cxx
test.cxx:6:6: warning: conversion from string literal
      to 'char *' is deprecated
      [-Wc++11-compat-deprecated-writable-strings]
  foo( "abcde" ) ;
       ^
1 warning generated.

警告を抑止する “-Wno-…” のオプションをつけて “g++ -Wno-c++11-compat-deprecated-writable-strings sample.cxx” でコンパイルすることもできるけど、ここは変数の型を厳格にするのが鉄則。

この例では、引数の “ABC” が書き換えのできない定数なので、const キーワードを付ければよい。ただし、宣言時の const の付け場所によって、意味が違うので注意が必要。

void foo( char const* s ) { // const char* s も同じ意味
   *s = 'A' ; // NG ポインタの先を書き換えできない
   s++ ;      // OK ポインタを動かすことはできる
}
void foo( char *const s ) {
   *s = 'A' ; // OK ポインタの先は書き込める
   s++ ;      // NG ポインタは動かせない
}
void foo( char const*const s ) {
   *s = 'A' ; // NG ポインタの先を書き換えできない
   s++ ;      // NG ポインタは動かせない
}

const を書く場所は?

int const x = 123 , y = 234 ; の場合、yは定数だろうか?

(( おまけ ))
#include <stdio.h>
int main() {
  int const x = 123 , y = 234 ; // x は定数だけど yは定数?
  x++ ; // 予想通りエラー
  y++ ; // yも定数なのでエラー
  int const s = 345 , const t = 456 ; // sもtも明らかに定数っぽい
  //                  ^ここで文法エラー

  // おまけのおまけ
  char* s , t ;   // s は文字へのポインタ、t は文字
  char  *s , *t ; // s は文字へのポインタ、t も文字へのポインタ
  return 0 ;
}

意思決定木と構文解析

前回までの授業で2分探索木の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木と構文木を紹介する。

意思決定木

意思決定木の説明ということで、yes/noクイズの例を示しながら、2分木になっていることを 説明しプログラムを紹介。

((意思決定木の例:うちの子供が発熱した時))
       38.5℃以上の発熱がある?
      no/         \yes
   元気がある?        むねがひいひい?
 yes/    \no      no/     \yes
様子をみる 氷枕で病院  解熱剤で病院  速攻で病院

このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。これは2分木と同じであり、このような処理は以下のように記述ができる。

struct Tree {
   char *qa ;
   struct Tree* yes ;
   struct Tree* no ;
} ;
struct Tree* dtree( char *s ,
                    struct Tree* l , struct Tree* r )
{  struct Tree* n ;
   n = (struct Tree*)malloc( sizeof( struct Tree ) ) ;
   if ( n != NULL ) {
      n->qa = s ;
      n->yes = l ;
      n->no = r ;
   }
   return n ;
}
void main() {
   struct Tree* p =
      dtree( "38.5℃以上の発熱がある?" ,
             dtree( "胸がひぃひぃ?" ,
                    dtree( "速攻で病院",NULL,NULL ) ,
                    dtree( "解熱剤で病院",NULL,NULL ) ) ,
             dtree( "元気がある?" ,
                    dtree( "様子をみる",NULL,NULL ) ,
                    dtree( "氷枕で病院",NULL,NULL ) ) ) ;
   // 決定木をたどる
   struct Tree* d = p ;
   while( d->yes != NULL || d->no != NULL ) {
      printf( "%s¥n" , d->qa ) ;
      scanf( "%d" , &ans ) ;
      // 回答に応じてyes/noの枝に進む。
      if ( ans == 1 )      // yesを選択
         d = d->yes ;
      else if ( ans == 0 ) // noを選択
         d = d->no ;
   }
   // 最終決定を表示
   printf( "%s¥n" , d->qa ) ;
}

コンパイラと言語処理系

2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。

高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により

  • インタプリタ(interpreter:翻訳)
    • ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
  • コンパイラ(compiler:通訳)
    • ソースプログラムから機械語を生成し、実行する際には機械語を実行
  • トランスレーター
    • ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
  • バイトコードインタプリタ
    • ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う

に分けられる。

コンパイラが命令を処理する際には、以下の処理が行われる。

  1. 字句解析(lexical analysys)
    文字列を言語要素(token)に分解
  2. 構文解析(syntax analysys)
    tokenの並び順に意味を反映した構造を生成
  3. 意味解析(semantics analysys)
    命令に合わせた中間コードを生成
  4. 最適化(code optimization)
    中間コードを変形して効率よいプログラムに変換
  5. コード生成(code generation)
    実際の命令コードとして出力

バイトコードインタプリタとは

例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。

通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。

(( Java の場合 ))
foo.java (ソースコード)
 ↓       Java コンパイラ
foo.class (中間コード)
 ↓
JRE(Java Runtime Engine)の上で
中間コードをインタプリタ方式で実行

あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。

ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。

また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。

しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。

トークンと正規表現(字句解析)

規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。

((正規表現の書き方))
選言     「abd|acd」は、abd または acd にマッチする。
グループ化 「a(b|c)d」は、真ん中の c|b をグループ化
量化    パターンの後ろに、繰り返し何回を指定
      ? 直前パターンが0個か1個
       「colou?r」
      * 直前パターンが0個以上繰り返す
       「go*gle」は、ggle,gogle,google
      + 直前パターンが1個以上繰り返す
       「go+gle」は、gogle,google,gooogle

正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。

[文字1-文字2...] 文字コード1以上、文字コード2以下
      「[0-9]+」012,31415,...数字の列
^     行頭にマッチ
$     行末にマッチ
((例))
[a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現

構文とバッカス記法

言語の文法を表現する時、バッカス記法(BNF)が良く使われる。

((バッカス記法))
<表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;

例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。

((加減乗除式のバッカス記法))
<加算式> ::= <乗算式> '+' <乗算式>
          | <乗算式> '-' <乗算式>
          | <乗算式>
          ;
<乗算式> ::= <数字> '*' <乗算式>
          | <数字> '/' <乗算式>
          | <数字>
          ;
<数字>   ::= [0-9]+
          ;

上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。どこが間違っているだろうか?

このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。

また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。

  +
 / \
1   *
   / \
  23   456

理解度確認

  • インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
  • 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。

Visual Studio Code で印刷

実験や授業課題のレポート提出で、プログラムを印刷したものを提出してくれるけど、行を移動しながら何度もスクリーンキャプチャで保存した画像ファイルをWordに貼り付けて提出している人が多い。

いままでなら、「秀丸エディタで印刷してよ…」とか言ってたけど、最近は Visual Studio Code を利用しているみたいで、「プログラムの印刷の仕方がわからない」という人が多いようだ。

実際、Visual Studio Code はたまにしか使わないけど、確かに基本機能の中には印刷機能がないな….

今時、プログラムリストなんて紙媒体で印刷しないもんなんだろうけど、プログラム課題のレポートなら、コードは証拠だからな。

Visual Studio Code の PrintCode

こういう場合は、Visual Studio Code の拡張機能の PrintCode をインストールすればいい。

印刷する時は、F1 キーを押して、拡張コマンドの入力で printcode と打てば印刷される。

ただし、PrintCode は JavaScript を使って HTML を生成し印刷を行うため、Windowsでデフォルトブラウザが Internet Explorer の場合は動かない。このためデフォルトブラウザの変更により Chrome などを使う様に変更しておく必要あり。

Sublime Text なら Print to HTML

同じく、エディタが Sublime Text を使っているのなら、これも印刷機能が付いていないので、”Print to HTML”パッケージをインストールし、あとは、Shift+Alt+P で HTML 用に出力できるのでブラウザ側で印刷を行う。

AVL木と2分ヒープ

前回、2分木へのデータ追加の説明と、演習課題を行っていたが、演習時間としては短いので、今日も前半講義で残り時間は演習とする。

2分木へのデータ追加と不均一な木の成長

先週の講義で説明していた、entry() では、データを追加すべき末端を探し、追加する処理であった。

しかし、前回のプログラムで、以下のような順序でデータを与えたら、どのような木が出来上がるであろうか?

  • 86, 53, 11 – 降順のデータ
  • 12, 24, 42 – 昇順のデータ

この順序でデータが与えられると、以下のような木が出来上がってしまう。このような木では、データを探しても1回の比較でもデータ件数が1つ減るだけで、O(N)となってしまう。通常のデタラメな順序でデータが与えられれば、木はほぼ左右均等に成長するはずである。

AVL木

このような、不均一な木が出来上がっても、ポインタの繋ぎ変えで改善が可能となる。例えば、以下のような木では、赤の左側に偏っている。

このような場合でも、最初、青の状態であっても、不均一な部分で赤のようなポインタの繋ぎ変えを行えば、木の段数を均一に近づけることができる。この例では、11,65,92の木が、右回転して 11 の木の位置が上がっている。(右回転)

この様に、左右の枝の大きさが不均一な場所を見つけ、右回転(もしくは左回転)を行う処理を繰り返すことで、段数が均一な2分木に修正ができる。この様な処理でバランスの良い木に修正された木は、AVL木と呼ばれる。

理解確認

  • 木の根からの段数を求める関数 tree_depth() を作成せよ。
    例えば、上のAVL木の説明の図であれば、4段なので4を返すこと。
  • malloc() 関数を使うために必要な #include のヘッダファイルは何か?
// 木の段数を数える関数
_____ tree_depth( _______________ p ) {
   if ( p == NULL ) {
      return _____ ;
   } else {
      int d_L = ______________ ;
      int d_R = ______________ ;
      if ( d_L > d_R )
         return _____ ;
      else
         return _____ :
   }
}

void main() {
   printf( "%d¥n" , tree_depth( top ) ) ;
}

2分ヒープ

2分探索木では、1つのノードにつき2つのポインタを持ちメモリの使用が多い。配列を用いて2分探索木を作る方法として、2分ヒープがある。通常の2分探索法のように配列内に昇順でデータを保存すると、途中にデータを挿入する場合、データを後ろにずらす必要があるため、O(N)の処理時間を要する。しかし、2分木の上から番号を以下の様に振ると、i番目の、左の枝2*i+1 番目、右の枝2*i+2 番目であることが判る。

このような配列の使い方を、2分ヒープと呼ぶ。この方式ではれば、アルゴリズムの説明は省略するが、O(log(N))で挿入が可能となる。

int a[ 7 ] = { 53 , 11 , 86 , 10 , 22 , 65 , 92 } ;
void print_heap( int array[] , int idx , int size ) {
   if ( idx < size ) {
      // 左の枝を表示
      print_heap( array , 2*idx + 1 , size ) ;
      // 真ん中の枝を表示
      printf( "%d " , array[ idx ] ) ;
      // 右の枝を表示
      print_heap( array , 2*idx + 2 , size ) ;
   }
}
void main() {
   print_heap( a , 0 , 7 ) ;
} 

2分探索木にデータ追加と演習

2分探索木にデータを追加

前回の授業では、データの木構造は、補助関数 tcons() により直接記述していた。実際のプログラムであれば、データに応じて1件づつ木に追加するプログラムが必要となる。この処理は以下のようになるだろう。

struct Tree* top = NULL ;

// 2分探索木にデータを追加する処理
void entry( int d ) {
   struct Tree** tail = &top ;
   while( *tail != NULL ) {
      if ( (*tail)->data == d )       // 同じデータが見つかった
         break ;
      else if ( (*tail)->data > d )
         tail = &( (*tail)->left ) ;  // 左の枝に進む
      else
         tail = &( (*tail)->right ) ; // 右の枝に進む
   }
   if ( (*tail) == NULL )
      *tail = tcons( d , NULL , NULL ) ;
}

int main() {
   char buff[ 100 ] ;
   int x ;

   while( fgets( buff , sizeof( buff ) , stdin ) != NULL )
      if ( sscanf( buff , "%d" , &x ) != 1 )
         break ;
      entry( x ) ;

   return 0 ;    
}

このプログラムでは、struct Tree** tail というポインタへのポインタ型を用いている。tail が指し示す部分をイメージするための図を以下に示す。

理解確認

  • 関数entry() の14行目の if 判定を行う理由を説明せよ。
  • 同じく、8行目の tail = &( (*tail)->left ) の式の各部分の型について説明せよ。
  • sscanf() の返り値を 1 と比較している理由を説明せよ。
  • entry() でデータを格納する処理時間のオーダを説明せよ。
// 前述プログラムは、データ追加先が大域変数なのがダサい。
// 局所変数で追加処理ができるように、したいけど...

void entry( struct Tree* top , int d ) {
   struct Tree** tail = &top ;
   while( *tail != NULL ) {
      :
      // 上記の entry() と同じとする
}
void main() {
   // 追加対象の top は局所変数
   struct Tree* top = NULL ;
 
   char buff[ 100 ] ;
   int  x ;
   while( fgets(buff,sizeof(buff),stdin) != NULL ) {
      if ( sscanf( buff , "%d" , &x ) != 1 )
         break ;
      entry( top , x ) ;
   }
}

上記のプログラム↑は動かない。なぜ?
このヒントは、このページ末尾に示す。

演習課題

以下のようなデータを扱う2分探索木のプログラムを作成せよ。以下の箇条書き番号の中から、(出席番号 % 3+1)のデータについてプログラムを作ること。

  1. 名前(name)と電話番号(phone)
  2. 名前(name)と誕生日(year,mon,day)
  3. 名前(name)とメールアドレス(mail)

プログラムは以下の機能を持つこと。

  • 1行1件でデータを入力し、2分木に追加できること。
  • 全データを昇順(or降順)で表示できること。
  • 検索条件を入力し、目的のデータを探せること。

レポートでは、(a)プログラムリスト,(b)その説明,(c)動作検証結果,(d)考察 を記載すること。考察のネタが無い人は、このページの理解確認の内容について記述しても良い。

// プログラムのおおまかな全体像の例
struct Tree {
    //
    // この部分を考えて
    //   以下の例は、名前と電話番号を想定
} ;

struct Tree* top = NULL ;
void tree_entry( char n[] , char ph[] ) {
    // n:名前,ph:電話番号 を追加
}
void tree_print( struct Tree* p ) {
    // 全データを表示
}

struct Tree* tree_search_by_name( char n[] ) {
    // n:名前でデータを探す
}

int main() {
    char name[ 20 ] , phone[ 20 ] ;
    char buff[ 1000 ] ;
    struct Tree* p ;

    // データを登録する処理(空行を入力するまで繰り返し)
    while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) {
        if ( sscanf( buff , "%s%s" , name , phone ) != 2 )
            break ; // 入力で、2つの文字列が無い場合はループを抜ける
        tree_entry( name , phone ) ;
    }

    // 全データの表示
    tree_print( top ) ;

    // データをさがす
    while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) {
        if ( sscanf( buff , "%s" , name ) != 1 )
            break ; // 入力で、1つの文字列が無い場合はループを抜ける
        if ( (p = tree_search_by_name( name )) == NULL )
            printf( "見つからない¥n" ) ;
        else
            printf( "%s %s¥n" , p->name , p->phone ) ;
    }
    return 0 ;
}

動かないプログラムのヒント

// 前述プログラムは、データ追加先が大域変数なのがダサい。
// 局所変数で追加処理ができるように、したいけど...
// ちなみに、こう書くと動く

// Tree*を返すように変更
struct Tree* entry( struct Tree* top , int d ) {
   :
   // 最初の entry と同じ
   :
   return top ;
}
void main() {
   // 追加対象のポインタ
   struct Tree* top = NULL ;
   while( ... ) {
      :

      // entry() の返り値を top に代入
      top = entry( top , x ) ;
   }
}

fgets()とsscanf()による入力の解説

前述のプログラムの入力では、fgets() と sscanf() による処理を記載した。この関数の組み合わせが初見の人も多いと思うので解説。

// scanf() で苦手なこと -------------------------//
// scanf() のダメな点
// (1) 何も入力しなかったら...という判定が難しい。
// (2) 間違えて、abc みたいに文字を入力したら、
// scanf()では以後の入力ができない。(入力関数に詳しければ別だけどさ)
int x ;
while( scanf( "%d" , &x ) == 1 ) {
   entry( x ) ;
}

// scanf() で危険なこと -------------------------//
// 以下の入力プログラムに対して、10文字以上を入力すると危険。
// バッファオーバーフローが発生する。
char name[ 10 ] ;
scanf( "%s" , name ) ;

// 安全な入力 fgets() ---------------------------//
// fgets() は、行末文字"¥n"まで配列 buff[]に読み込む。
// ただし、sizeof(buuf) 文字より長い場合は、途中まで。
char buff[ 100 ] ;
while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) {
    // buff を使う処理
}
// 文字列からデータを抜き出す sscanf() -------------//
// sscanf は、文字列の中から、データを抜き出せる。
// 入力が文字列であることを除き、scanf() と同じ。
char str[] = "123 abcde" ;
int  x ;
char y[10] ;
sscanf( str , "%d%s" , &x , y ) ;
// x=123 , y="abcde" となる。
// sscanf() の返り値は、2 (2個のフィールドを抜き出せた)

理解確認

2分探索木

配列やリスト構造のデータの中から、目的となるデータを探す場合、配列であれば2分探索法が用いられる。これにより、配列の中からデータを探す処理は、O(log N)となる。(ただし事前にデータが昇順に並んでいる必要あり)

// 2分探索法
int array[ 8 ] = { 11, 13 , 27, 38, 42, 64, 72 , 81 } ;

int bin_search( int a[] , int key , int L , int R ) {
   // Lは、範囲の左端
   // Rは、範囲の右端+1 (注意!!)
   while( R > L ) {
      int m = (L + R) / 2 ;
      if ( a[m] == key )
         return key ;
      else if ( a[m] > key )
         R = m ;
      else
         L = m + 1 ;
   }
   return -1 ; // 見つからなかった
}

void main() {
   printf( "%d¥n" , bin_search( array , 0 , 8 ) ) ;
}

一方、リスト構造ではデータ列の真ん中のデータを取り出すには、先頭からアクセスするしかないのでO(N)の処理時間がかかり、極めて効率が悪い。リスト構造のようにデータの追加が簡単な特徴をもったまま、もっとデータを高速に探すことはできないものか?

2分探索木

ここで、データを探すための効率の良い方法として、2分探索木(2分木)がある。以下の木のデータでは、分離する部分に1つのデータと、左の枝(下図赤)と右の枝(下図青)がある。

この枝の特徴は何だろうか?この枝では、中央のデータ例えば42の左の枝には、42未満の数字の枝葉が繋がっている。同じように、右の枝には、42より大きな数字の枝葉が繋がっている。この構造であれば、64を探したいなら、42より大きい→右の枝、72より小さい→左の枝、64が見つかった…と、いう風にデータを探すことができる。

特徴としては、1回の比較毎にデータ件数は、(N-1)/2件に減っていく。よって、この方法であれば、O(log N)での検索が可能となる。これを2分探索木とよぶ。

このデータ構造をプログラムで書いてみよう。

struct Tree {
   struct Tree* left ;
   int          data ;
   struct Tree* right ;
} ;

// 2分木を作る補助関数
struct Tree* tcons( struct Tree* L ,
                    int          d ,
                    struct Tree* R ) {
   struct Tree* n = (struct Tree*)malloc(
                       sizeof( struct Tree ) ) ;
   if ( n != NULL ) { /* (A) */
      n->left = L ;
      n->data = d ;
      n->right = R ;
   }
   return n ;
}

// 2分探索木よりデータを探す
int tree_search( struct List* p , int key ) {
   while( p != NULL ) {
      if ( p->data == key )
         return key ;
      else if ( p->data &gt key )
         p = p->left ;
      else
         p = p->right ;
   }
   return -1 ; // 見つからなかった
}
struct Tree* top = NULL ;

void main() {
   // 木構造をtcons()を使って直接生成 (B)
   top = tcons( tcons( tcons( NULL , 13 , NULL ) ,
                       27 ,
                       tcons( NULL , 38 , NULL ) ) ,
                42 ,
                tcons( tcons( NULL , 64 , NULL ) ,
                       72 ,
                       tcons( NULL , 81 , NULL ) ) ) ;
   printf( "%d¥n" , tree_search( top , 64 ) ) ;
}

この方式の注目すべき点は、struct Tree {…} で宣言しているデータ構造は、2つのポインタと1つのデータを持つという点では、双方向リストとまるっきり同じである。データ構造の特徴の使い方が違うだけである。

理解度確認

  • 上記プログラム中の、補助関数tcons() の(A)の部分 “if ( n != NULL )…” の判定が必要な理由を答えよ。
  • 同じくmain() の (B) の部分 “top = tcons(…)” において、末端部に NULL を入れる理由を答えよ。

2分木に対する処理

2分探索木に対する簡単な処理を記述してみよう。

// データを探す
int search( struct Tree* p , int key ) {
   // 見つかったらその値、見つからないと-1
   while( p != NULL ) {
      if ( p->data == key )
         return key ;
      else if ( p->data > key )
         p = p->left ;
      else
         p = p->right ;
   }
   return -1 ;
}
// データを全表示
void print( struct Tree* p ) {
   if ( p != NULL ) {
      print( p->left ) ;
      printf( "%d¥n" , p->data ) ;
      print( p->right ) ;
   }
}
// データ件数を求める
int count( struct Tree* p ) {
   if ( p == NULL )
      return 0 ;
   else
      return 1
             + count( p->left )
             + count( p->right ) ;
}
// データの合計を求める
int sum( struct Tree* p ) {
   if ( p == NULL )
      return 0 ;
   else
      return p->data
             + count( p->left )
             + count( p->right ) ;
}
// データの最大値
int max( struct Tree* p ) {
   while( p->right != NULL )
      p = p->right ;
   return p->data ;
}

これらの関数では、木構造の全てに対する処理を実行する場合には、再帰呼び出しが必要となる。