ホーム » スタッフ » 斉藤徹

斉藤徹」カテゴリーアーカイブ

2020年10月
 123
45678910
11121314151617
18192021222324
25262728293031

最新の投稿(電子情報)

アーカイブ

カテゴリー

双方向リスト

リスト構造の利点と欠点

リストを使った集合演算のように、データを連ねたリストは、単純リストとか線形リストと呼ばれる。特徴はデータ数に応じてメモリを確保する点や、途中へのデータの挿入削除が得意な点があげられる。一方で、配列は想定最大データ件数で宣言してしまうと、実際のデータ数が少ない場合、メモリの無駄も発生する。しかし、想定件数と実データ件数がそれなりに一致していれば、無駄も必要最小限となる。リスト構造では、次のデータへのポインタを必要とすることから、常にポインタ分のメモリは、データにのみ注目すれば無駄となる。

シーケンシャルアクセス・ランダムアクセス

もう1つの欠点がシーケンシャルアクセスとなる。テープ上に記録された情報を読む場合、後ろのデータを読むには途中データを読み飛ばす必要があり、データ件数に比例したアクセス時間を要する。このような N番目 データ参照に、O(N)の時間を要するものは、シーケンシャルアクセスと呼ばれる。

一方、配列はどの場所であれ、一定時間でデータの参照が可能であり、これは ランダムアクセスと呼ばれる。N番目のアクセス時間がO(1)を要する。

このため、プログラム・エディタの文字データの管理などに単純リストを用いた場合、1つ前の行に移動するには、先頭から編集行までの移動で O(N) の時間がかかり、大量の行数の編集では、使いものにならない。ここで、シーケンシャルアクセスでも1つ前にもどるだけでも処理時間を改善してみよう。

単純リストから双方向リストへ

ここまで説明してきた単純リストは、次のデータへのポインタを持つ。ここで、1つ後ろのデータ(N番目からN+1番目)をアクセスするのは簡単だけど、1つ前のデータ(N-1番目)を参照しようと思ったら、先頭から(N-1)番目を辿るしかない。でも、これは O(N) の処理であり時間がかかる処理。
ではどうすればよいのか?

この場合、一つ前のデータの場所を覚えているポインタがあれば良い。

// 双方向リストの宣言
struct BD_List {
    struct BD_List* prev ; // 1つ前のデータへのポインタ
    int             data ;
    struct BD_List* next ; // 次のデータへのポインタ
} ;

このデータ構造は、双方向リスト(bi-directional list)と呼ばれる。では、簡単なプログラムを書いてみよう。双方向リストのデータを簡単に生成するための補助関数から書いてみる。

// リスト生成補助関数
struct BD_List* bd_cons( struct BD_List* p ,
                         int d ,
                         struct BD_List* n ) {
    struct BD_List* ans ;
    ans = (struct BD_List*)malloc(
                         sizeof( struct BD_List ) ) ;
    if ( ans != NULL ) {
        ans->prev = p ;
        ans->data = d ;
        ans->next = n ;
    }
    return ans ;
}
void main() {
    struct BD_List* top ;
    struct BD_List* p ;

    // 順方向のポインタでリストを生成
    top = bd_cons( NULL , 1 ,
          bd_cons( NULL , 2 ,
          bd_cons( NULL , 3 , NULL ) ) ) ;
    // 逆方向のポインタを埋める
    top->next->prev = top ;
    top->next->next->prev = top->gt;next ;

    // リストを辿る処理
    for( p = top ; p->next != NULL ; p = p->next )
        printf( "%d\n" , p->data ) ;
    for(         ; p->prev != NULL ; p = p->prev )
        printf( "%d\n" , p->data ) ;
}

双方向リストの関数作成

以上の説明で、双方向の基礎的なプログラムの意味が分かった所で、練習問題。

先のプログラムでは、1,2,3 を要素とするリストを、ナマで記述していた。実際には、どんなデータがくるか分からないし、指定したポインタ p の後ろに、データを1件挿入する処理 bd_insert( p , 値 ) , また、p の後ろのデータを消す処理 bd_delete( p ) を書いてみよう。

// 双方向リストの指定場所 p の後ろに、値 d を要素とするデータを挿入せよ。
void bd_insert( struct BD_List* p , int d ) {
   struct BD_List*n = bd_cons( p , d , p->next ) ;
   if ( n != NULL ) {
      p->next->prev = n ;
      p->next = n ;
   }
}

// 双方向リストの指定場所 p の後ろのデータを消す処理は?
void bd_delete( struct BD_List* p ) {
   struct BD_List* d = p->next ;
   d->next->prev = p ;
   p->next = d->next ;
   free( d ) ;
}

// この手のリスト処理のプログラムでは、命令の順序が重要となる。
// コツとしては、修正したい箇所の遠くの部分を操作する処理から
// 書いていくと間違いが少ない。

番兵と双方向循環リスト

前述の bd_insert() だが、データの先頭にデータを挿入したい場合は、どう呼び出せば良いだろうか?
bd_insert() で、末尾にデータを挿入する処理は、正しく動くだろうか?

同じく、bd_delete() だが、データの先頭のデータを消したい場合は、どう呼び出せば良いだろうか?
また、データを消す場合、最後の1件のデータが消えて、データが0件になる場合、bd_delete() は正しく動くだろうか?

こういった問題が発生した場合、データが先頭・末尾で思ったように動かない時、0件になる場合に動かない時、特別処理でプログラムを書くことは、プログラムを読みづらくしてしまう。そこで、一般的には 循環リストの時にも紹介したが、番兵(Sentinel) を置くことが多い。

しかし、先頭用の番兵、末尾用の番兵を2つ用意するぐらいなら、循環リストにした方が便利となる。このような双方向リストでの循環した構造は、双方向循環リスト(bi-directional ring list)と呼ばれる。

deque(両端キュー)

この双方向循環リストを使うと、(1)先頭にデータを挿入(unshift)、(2)先頭のデータを取り出す(shift)、(3)末尾にデータを追加(push)、(4)末尾のデータを取り出す(pop)、といった処理が簡単に記述できる。この4つの処理を使うと、単純リスト構造で説明した、待ち行列(queue)やスタック(stack) が実現できる。この特徴を持つデータ構造は、先頭・末尾の両端を持つ待ち行列ということで、deque (double ended queue) とも呼ばれる。

理解確認

  • 双方向リストとはどのようなデータ構造か図を示しながら説明せよ。
  • 双方向リストの利点と欠点はなにか?
  • 番兵を用いる利点を説明せよ。
  • deque の機能と、それを実現するためのデータをリストを用いて実装するには、どうするか?
  • 双方向リストが使われる処理の例としてどのようなものがあるか?

サーバ廃棄に伴うHDD物理破壊

総合情報処理センターに、置いてあった私管理の、もう稼働してないサーバを廃棄。

個人情報の入っていたサーバなので、契約係の人にHDDは確実に破壊して…と言われたので、ドリルで貫通穴開けました。(^_^)

重要な個人情報の入ったサーバのHDDは、いつもこんな感じで廃棄になります。

{CAPTION}

{CAPTION}

{CAPTION}

2020データベースガイダンス

インターネットの情報量

インターネット上の情報量の話として、2010年度に281EB(エクサバイト)=281✕1018B(参考:kMGTPEZY)で、2013年度で、1.2 ZB(ゼタバイト)=1.2✕1021B という情報があった。ムーアの法則の「2年で2倍」の概算にも、それなりに近い。 では、今年2020年であれば、どのくらいであろうか?

しかし、これらの情報をGoogleなどで探す場合、すぐにそれなりに情報を みつけてくれる。これらは、どの様に実装されているのか?

Webシステムとデータベース

まず、指定したキーワードの情報を見つけてくれるものとして、 検索システムがあるが、このデータベースはどのようにできているのか?

Web創成期の頃であれば、Yahooがディレクトリ型の検索システムを構築 してくれている。(ページ作者がキーワードとURLを登録する方式) しかし、ディレクトリ型では、自分が考えたキーワードではページが 見つからないことが多い。

そこで、GoogleはWebロボット(クローラー)による検索システムを構築した。 Webロボットは、定期的に登録されているURLをアクセスし、 そのページ内の単語を分割しURLと共にデータベースに追加する。 さらに、ページ内にURLが含まれていると、そのURLの先で、 同様の処理を再帰的に繰り返す。

これにより、巨大なデータベースが構築されているが、これを普通のコンピュータで実現すると、処理速度が足りず、3秒ルール/5秒ルール (Web利用者は次のページ表示が3秒を越えると、次に閲覧してくれない)で能力不足になってしまう。だからこそ、これらを処理するには負荷分散が重要となる。

Webシステムの負荷分散

一般的に、Webシステムを構築する場合には、 1段:Webサーバ、2段:動的ページ言語、3段:データベースとなる場合も 多い。この場合、OS=Linux,Web=Apache,DB=MySQL,動的ページ生成言語=PHPの組合せで、 LAMP構成とする場合も多い。

一方で、大量のデータを処理するDBでは、フロントエンド,スレーブDB,マスタDBのWebシステムの3段スキーマ構成となることも多い。

データベースシステム

データベースには、ファイル内のデータを扱うためのライブラリの BerkleyDB といった場合もあるが、複雑なデータの問い合わせを実現する 場合には、リレーショナル・データベース(RDB)を用いる。 RDBでは、データをすべて表形式であらわし、SQLというデータベース 問い合わせ言語でデータを扱う。 また、問い合わせは、ネットワーク越しに実現可能であり、こういった RDBで有名なものとして、Oracle , MySQL , PostgreSQL などがある。 単一コンピュータ内でのデータベースには、SQLite などがある。

リレーショナルデータベースの串刺し

商品名 単価 個数 価格
りんご 200 2 400
みかん 50 6 300
アイスクリーム 125 1 125
みかん 50 3 150

このような表データでは、たとえば「みかん」の単価が変更になると、2行目,4行目を変更しなければいけなくなる。巨大な表の場合、これらの変更は大変。

そこで、この表を2つに分類する。

単価表
商品ID 商品名 単価
1010 りんご 125
1011 みかん 50
2101 アイスクリーム 125
販売表
商品ID 個数
1010 2
1011 6
2101 1
1011 3
必要に応じて、2つの表から、以下のような SQL の命令で、データを抽出する。

select 単価表.商品名, 単価表.単価, 販売表.個数, 単価表.単価*販売表.個数
    from 単価表, 販売表 ;

 

データベースに求められるのACID特性

データベースシステムと呼ばれるには、ACID特性が重要となる。(次に述べるデータベースが無かったら…を参照)

  • A: 原子性 (Atomicity) – 処理はすべて実行するか / しない のどちらか。
  • C: 一貫性 (Consistency) – 整合性とも呼ばれ、与えられたデータのルールを常に満たすこと。
  • I: 独立性 (Isolation) – 処理順序が違っても結果が変わらない。それぞれの処理が独立している。
  • D: 永続性 (Durability) – データが失われることがない(故障でデータが無くならないとか)

しかし、RDBでは複雑なデータの問い合わせはできるが、 大量のデータ処理のシステムでは、フロントエンド,スレーブDB,マスタDB の同期が問題となる。この複雑さへの対応として、最近は NoSQL(RDB以外のDB) が 注目されている。(例: Google の BigTable)

データベースが無かったら

これらのデータベースが無かったら、どのようなプログラムを作る 必要があるのか?

情報構造論ではC言語でデータベースっぽいことをしていたが、 大量のデータを永続的に扱うのであれば、ファイルへのデータの読み書き 修正ができるプログラムが必要となる。

こういったデータをファイルで扱う場合には、1件のデータ長が途中で 変化すると、N番目のデータは何処?といった現象が発生する。 このため、簡単なデータベースを自力で書くには、1件あたりのデータ量を 固定し、lseek() , fwrite() , fread() などの 関数でランダムアクセスのプログラムを書く必要がある。

また、データの読み書きが複数同時発生する場合には、排他処理(独立性)も 重要となる。例えば、銀行での預け金10万の時、3万入金と、2万引落としが 同時に発生したらどうなるか? 最悪なケースでは、 (1)入金処理で、残金10万を読み出し、 (2)引落し処理で、残金10万を読み出し、 (3)入金処理で10万に+3万で、13万円を書き込み、 (4)引落し処理で、残金10万-2万で、8万円を書き込み。 で、本来なら11万になるべき結果が、8万になるかもしれない。

さらに、コンピュータといってもハードディスクの故障などは発生する。 障害が発生してもデータの永続性を保つためには、バックアップや 障害対応が重要となる

高専プロコン2020-2日目

リモート開催の高専プロコン2020の2日目、福井高専の3チームは発表・質疑応答が全チーム2日目。

最終結果

課題部門
Labocket
XRによる理科学習サポートアプリケーション
敢闘賞
オーラルボイス
機械学習による英語発音支援アプリケーション
敢闘賞
NICT賞(起業家甲子園挑戦権)🎉
自由部門
House Pointer
写真×AIで木造建築を守れ!
敢闘賞

発表風景

色々と経験です

ZoomはやっぱりWiFi占有するのかな。質疑応答の学生さんのZoomが微妙に切れたらしく、回線が詰まっているのが返答に詰まっているように見える(マスクで口の動きが見えない)ので、かなり印象が悪くなってた。Zoomなどの発表経験の問題だな。
急遽、2チーム目以降のグループのために有線を準備。ついでに質疑応答の時は、マスクを外すようにアドバイス。

高専プロコン本戦2020

今年度の高専プログラミングコンテストは、新型コロナの影響でリモート開催となりました。

バーチャルプロコンなる3D仮想空間っぽい中で、ブースをめぐることができる演出もあります。

今年は福井高専から、4年電子情報の創造工学演習(前期)にて、作品をつくり3グループが本戦に参加しています。以下に、プレゼンテーション動画と資料の一部を掲載します。

課題部門

Labocket –XRによる理科学習サポートアプリケーション

オーラルボイス –機械学習による英語発音支援アプリケーション

自由部門

House Pointer –写真×AIで木造建築を守れ!

オブジェクト指向のUML図

専攻科2年のオブジェクト指向プログラミングでは、レポート課題の最終テーマがUMLで自分の特別研究のテーマを表現する内容。
今年のレポートでは、なかなかいいUML図を書いてくる人が多かったので、メモ。


参照渡しを積極的に使う

オブジェクト指向のレポート課題を採点していると、若干きになることがあったので、補足説明。

複素数クラスのレポート課題で、add() などのメソッドが、私がサンプルコードで示したのがそうなっていたのが原因だと思うけど、以下のようなコードとなっている。

class Complex {
   // 略
public:
   void add( Complex z ) { re += z.re ; im += z.im ; }
   //        ~~~~~~~~~ 値渡し
} ;

処理速度の効率を考える場合は、以下のような参照型(参照渡し)を使うのが一般的。上記のような値渡しだと、機械語を生成する際には、実引数の複素数のコピーが行われるので、無駄な処理が発生しがち。参照型を使えば実引数をコピーする手間が不要なので、処理の無駄が省ける。(Complexのような簡単なクラスなら無駄というほどのものじゃないけど)

class Complex {
public:
   void add( const Complex &z ) { re += z.re ; im += z.im ; }
   //        定数型 ~~~~~~~~~~参照渡し
} ;

ただ、上記の参照型を使うと、addメソッドで、zの内部を書き換えるような間違った処理を記述してしまうと、add()の処理で実引数に副作用が発生する。このため、こういった書き間違いによる影響がないことを明示するために、上記のように、z に const 指定子を記載しておくのが一般的。const がついていれば、addメソッド内部で間違って、zを書き換えるような処理を記載しても、コンパイラが間違いを指摘してくれる。

斉藤研資料

キャンパスツアー2020-2日目

キャンパスツアーの2日目、展示の卒研室を入れ替えて発表です。

制御系研究室の説明

{CAPTION}

{CAPTION}

インターネット系の説明

{CAPTION}

{CAPTION}

電子情報4年のプログラムコンテスト参加チームの説明

{CAPTION}

フェイスガード増産中

3Dプリンタで印刷したフェイスガード、追加増産。

シールド部分のフィルムには、昔々のOHPシートを活用してます。

{CAPTION}

ちなみに、最近の学生には、OHPと言ってもまるっきり伝わりません。