ホーム » t-saitoh の投稿

作者アーカイブ: t-saitoh

2021年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

最新の投稿(電子情報)

アーカイブ

カテゴリー

Outlook(Web版)でメールグループの注意点

「Outlook-Webで、メールグループ(AA)宛てのメールを読んでいる最中に、BBさん宛ての『新しいメッセージ』を書くと、AAグループにも送られる」という仕様のため、1人宛のつもりがグループ全員に送られるというトラブルが発生しやすいようだ。

メール作成画面では、”To/Cc: AAグループ” という表示は出ないのに、AA宛てに送られる…、かなり危険な仕様。

深さ優先探索と幅優先探索

2分探索木の説明で、深さ優先探索、幅優先探索の話をしたので、補足説明。

幅優先探索(breadth-first search)は、待ち行列を使って実装可能なことを示すサンプルコード。待ち行列は授業で説明したFIFOでは、データ件数0になる際の処理を手抜きで説明しているため、C++ の deque で記述。

深さ優先探索(deep-first search)は、スタックを使って実装可能なことを示すために、あえて再帰呼び出しを使わずに記述してみた。

#include <deque>
#include <algorithm>

int main() {
   std::deque<struct Tree*> deq ;
   struct Tree* p ;
   // 幅優先探索(FIFOを使って)
   deq.push_front( top ) ;
   while( !deq.empty() ) {
      // 待ち行列の最初を取り出す
      p = deq.front() ;
      deq.pop_front() ;
      if ( p != NULL ) {
         printf( "%d\n" , p->data ) ;
         // 待ち行列に枝葉を追加
         deq.push_back( p->left ) ;
         deq.push_back( p->right ) ;
      }
   }
   // 深さ優先探索(再帰呼び出しを使わずstack/LIFOで実装)
   p = top ;
   for( ;; ) {
      // 分岐をpushしながら左下にまっしぐら
      while( p != NULL ) {
         deq.push_front( p ) ;
         p = p->left ;
      }
      if ( deq.empty() )
         break ;
      // pushしておいた分岐点をpopして繰り返し
      p = deq.front() ;
      deq.pop_front() ;
      printf( "%d\n" , p->data ) ;
      p = p->right ;
   }
   return 0 ;
}

mysqldump

単なるメモ

mysql の全データを吐き出すコマンド(要 mysql root password)

((( データベース dump )))
$ sudo mysqldump -u root -p -h localhost データベース名 テーブル名
                 > YYYY-MM-DD-mysql-db-tbl.sql
$ sudo mysqldump -u root -p -h localhost --database データベース名
                 > YYYY-MM-DD-mysql-db.sql
$ sudo mysqldump -u root -p -h localhost -A -n
                 > YYYY-MM-DD-mysql.sql
((( データベース import )))
$ sudo mysql -h localhost -u root -p < YYYY-MM-DD-mysql.sql

2分探索木

配列やリスト構造のデータの中から、目的となるデータを探す場合、配列であれば2分探索法が用いられる。これにより、配列の中からデータを探す処理は、O(log N)となる。(ただし事前にデータが昇順に並んでいる必要あり)

// 2分探索法
int array[ 8 ] = { 11, 13 , 27, 38, 42, 64, 72 , 81 } ;

int bin_search( int a[] , int key , int L , int R ) {
   // Lは、範囲の左端
   // Rは、範囲の右端+1 (注意!!)
   while( R > L ) {
      int m = (L + R) / 2 ;
      if ( a[m] == key )
         return key ;
      else if ( a[m] > key )
         R = m ;
      else
         L = m + 1 ;
   }
   return -1 ; // 見つからなかった
}

void main() {
   printf( "%d¥n" , bin_search( array , 0 , 8 ) ) ;
}

一方、リスト構造ではデータ列の真ん中のデータを取り出すには、先頭からアクセスするしかないのでO(N)の処理時間がかかり、極めて効率が悪い。リスト構造のようにデータの追加が簡単な特徴をもったまま、もっとデータを高速に探すことはできないものか?

2分探索木

ここで、データを探すための効率の良い方法として、2分探索木(2分木)がある。以下の木のデータでは、分離する部分に1つのデータと、左の枝(下図赤)と右の枝(下図青)がある。

この枝の特徴は何だろうか?この枝では、中央のデータ例えば42の左の枝には、42未満の数字の枝葉が繋がっている。同じように、右の枝には、42より大きな数字の枝葉が繋がっている。この構造であれば、64を探したいなら、42より大きい→右の枝、72より小さい→左の枝、64が見つかった…と、いう風にデータを探すことができる。

特徴としては、1回の比較毎にデータ件数は、(N-1)/2件に減っていく。よって、この方法であれば、O(log N)での検索が可能となる。これを2分探索木とよぶ。

このデータ構造をプログラムで書いてみよう。

struct Tree {
   struct Tree* left ;
   int          data ;
   struct Tree* right ;
} ;

// 2分木を作る補助関数
struct Tree* tcons( struct Tree* L ,
                    int          d ,
                    struct Tree* R ) {
   struct Tree* n = (struct Tree*)malloc(
                       sizeof( struct Tree ) ) ;
   if ( n != NULL ) { /* (A) */
      n->left = L ;
      n->data = d ;
      n->right = R ;
   }
   return n ;
}

// 2分探索木よりデータを探す
int tree_search( struct List* p , int key ) {
   while( p != NULL ) {
      if ( p->data == key )
         return key ;
      else if ( p->data > key )
         p = p->left ;
      else
         p = p->right ;
   }
   return -1 ; // 見つからなかった
}
struct Tree* top = NULL ;

void main() {
   // 木構造をtcons()を使って直接生成 (B)
   top = tcons( tcons( tcons( NULL , 13 , NULL ) ,
                       27 ,
                       tcons( NULL , 38 , NULL ) ) ,
                42 ,
                tcons( tcons( NULL , 64 , NULL ) ,
                       72 ,
                       tcons( NULL , 81 , NULL ) ) ) ;
   printf( "%d¥n" , tree_search( top , 64 ) ) ;
}

この方式の注目すべき点は、struct Tree {…} で宣言しているデータ構造は、2つのポインタと1つのデータを持つという点では、双方向リストとまるっきり同じである。データ構造の特徴の使い方が違うだけである。

理解度確認

  • 上記プログラム中の、補助関数tcons() の(A)の部分 “if ( n != NULL )…” の判定が必要な理由を答えよ。
  • 同じくmain() の (B) の部分 “top = tcons(…)” において、末端部に NULL を入れる理由を答えよ。

2分木に対する処理

2分探索木に対する簡単な処理を記述してみよう。

// データを探す
int search( struct Tree* p , int key ) {
   // 見つかったらその値、見つからないと-1
   while( p != NULL ) {
      if ( p->data == key )
         return key ;
      else if ( p->data > key )
         p = p->left ;
      else
         p = p->right ;
   }
   return -1 ;
}
// データを全表示
void print( struct Tree* p ) {
   if ( p != NULL ) {
      print( p->left ) ;
      printf( "%d¥n" , p->data ) ;
      print( p->right ) ;
   }
}
// データ件数を求める
int count( struct Tree* p ) {
   if ( p == NULL )
      return 0 ;
   else
      return 1
             + count( p->left )
             + count( p->right ) ;
}
// データの合計を求める
int sum( struct Tree* p ) {
   if ( p == NULL )
      return 0 ;
   else
      return p->data
             + count( p->left )
             + count( p->right ) ;
}
// データの最大値
int max( struct Tree* p ) {
   while( p->right != NULL )
      p = p->right ;
   return p->data ;
}

これらの関数では、木構造の全てに対する処理を実行する場合には、再帰呼び出しが必要となる。

(2021/10/12)
print() の再帰の処理の流れを説明するなかで、「じゃあデータを降順で表示したかったらどうすればいい?」「じゃあ、データが根っこに近い方から表示したかったらどうすればいい?」みたいな話を、高専プロコンの競技部門の組み合わせ問題に考えてほしくなって、つぶやいちゃったもんだから、話がそれて「再帰で記載するのは、枝の先の処理が終わってから、残りの枝の処理を行うので、深さ優先探索法になる。」、「根っこに近い方から表示したかったら幅優先探索法」になるよ…という話をする。ついでの雑談で、「将棋とかチェスのプログラムだと、次の手を打った後の評価で先読みするけど、あれどうやってる?」という話をして、その中でαβ法というのがあってね…静的評価で良い手の候補を選び、その手は動的評価で再帰処理を行い、本当に良い手を選ぶ…という説明を行った。来週は、2分木の sum() とか count() を考えてもらうことから始めよう。

データベースの用語など

データベースの機能

データベースを考える時、利用者の視点で分類すると、以下の3つの視点の違いがある。

  1. データベースの管理者(データベース全体の管理)、
  2. 応用プログラマ(SQLなどを使って目的のアプリケーションに合わせた処理を行う)、
  3. エンドユーザ(データベース処理の専門家でなく、DBシステムのGUIを使ってデータベースを操作する)

データベース管理システム(DBMS)では、データとプログラムを分離してプログラムを書けるように、データ操作言語(SQL)で記述する。

また、データは独立して扱えるようにすることで、データへの物理的なアクセス方法があっても、プログラムの変更が不要となるようにする。

データベースは、利用者から頻繁に不定期にアクセスされる。このため、データの一貫性が重要となる。これらを満たすためには、(a) データの正当性の確認、(b) 同時実行制御(排他制御)、(c) 障害回復の機能が重要となる。

これ以外にも、データベースからデータを高速に扱えるためには、検索キーに応じてインデックスファイルを管理してくれる機能や、データベースをネットワーク越しに使える機能などが求められる。

データベースに対する視点

実体のデータをそれぞれの利用者からデータベースを記述したものはスキーマと呼ばれる。そのスキーマも3つに分けられ、これを3層スキーマアーキテクチャと呼ぶ。

  • 外部スキーマ – エンドユーザからどんなデータに見えるのか
  • 概念スキーマ – 応用プログラマからは、どのような表の組み合わせで見えるのか、表の中身はどのようなものなのか。
  • 内部スキーマ – データベース管理者からみて、表の中身は、どのようなファイル名でどのような形式でどう保存されているのか

データモデル

データを表現するモデルには、いくつかのモデルがある。

  1. 階層型データモデル – 木構造で枝葉に行くにつれて細かい内容
  2. ネットワーク型モデル – データの一部が他のデータ構造と関係している。
  3. 関係モデル – すべてを表形式で表す。

データベースの基礎

データベースは、1970年頃に、E.F.コッド博士によりデータベースのための数学的な理論が確立された。

  • 集合 A, B – 様々なデータ
  • 直積 AB = { (x,y| xA , yB } 集合A,Bのすべての組み合わせ
  • 関係 R(A,B) すべての組み合わせのうち、関係があるもの。直積A,Bの部分集合

例えば、A={ s,t,u } , B={ p,q } (定義域) なら、

AB = { (s,p) , (s,q) , (t,p) , (t,q) , (u,p) , (u,q) }

このうち、Aが名前(sさん,tさん,uさん)、Bが性別(p=男性,q=女性)を表すなら、

R(A,B) = { (s,p) , (t,q) , (u,p) } (例)
(例):(sさん,男性) , (tさん,女性) , (uさん,男性)

理解確認

  • データベースにおける3層スキーマアーキテクチャについて説明せよ
  • 集合A,Bが与えられた時、関係R(A,B) はどのようなものか、数学定義や実例をあげて説明せよ。

双方向リスト

最初に、前期期末試験で「メモリの番地の理解が怪しい」人が多かったので、その確認のための Forms による小テストを行う。

実施してみらた、各問題とも50%程度の正解率。ひとまず解説をしたうえで、同じような問題を今後も何度かやってみたいと思う。

リスト構造の利点と欠点

リストを使った集合演算のように、データを連ねたリストは、単純リストとか線形リストと呼ばれる。特徴はデータ数に応じてメモリを確保する点や、途中へのデータの挿入削除が得意な点があげられる。一方で、配列は想定最大データ件数で宣言してしまうと、実際のデータ数が少ない場合、メモリの無駄も発生する。しかし、想定件数と実データ件数がそれなりに一致していれば、無駄も必要最小限となる。リスト構造では、次のデータへのポインタを必要とすることから、常にポインタ分のメモリは、データにのみ注目すれば無駄となる。

例えば、整数型のデータを最大 MAX 件保存したいけど、実際は それ以下の、平均 N 件扱うとする。この時のメモリの使用量 M は、以下のようになるであろう。

配列の場合 リスト構造の場合

(ただしヒープ管理用メモリ使用量は無視)

シーケンシャルアクセス・ランダムアクセス

もう1つの欠点がシーケンシャルアクセスとなる。テープ上に記録された情報を読む場合、後ろのデータを読むには途中データを読み飛ばす必要があり、データ件数に比例したアクセス時間を要する。このような N番目 データ参照に、O(N)の時間を要するものは、シーケンシャルアクセスと呼ばれる。

一方、配列はどの場所であれ、一定時間でデータの参照が可能であり、これは ランダムアクセスと呼ばれる。N番目のアクセス時間がO(1)を要する。

このため、プログラム・エディタの文字データの管理などに単純リストを用いた場合、1つ前の行に移動するには、先頭から編集行までの移動で O(N) の時間がかかり、大量の行数の編集では、使いものにならない。ここで、シーケンシャルアクセスでも1つ前にもどるだけでも処理時間を改善してみよう。

単純リストから双方向リストへ

ここまで説明してきた単純リストは、次のデータへのポインタを持つ。ここで、1つ後ろのデータ(N番目からN+1番目)をアクセスするのは簡単だけど、1つ前のデータ(N-1番目)を参照しようと思ったら、先頭から(N-1)番目を辿るしかない。でも、これは O(N) の処理であり時間がかかる処理。
ではどうすればよいのか?

この場合、一つ前のデータの場所を覚えているポインタがあれば良い。

// 双方向リストの宣言
struct BD_List {
    struct BD_List* prev ; // 1つ前のデータへのポインタ
    int             data ;
    struct BD_List* next ; // 次のデータへのポインタ
} ;

このデータ構造は、双方向リスト(bi-directional list)と呼ばれる。では、簡単なプログラムを書いてみよう。双方向リストのデータを簡単に生成するための補助関数から書いてみる。

// リスト生成補助関数
struct BD_List* bd_cons( struct BD_List* p ,
                         int d ,
                         struct BD_List* n ) {
    struct BD_List* ans ;
    ans = (struct BD_List*)malloc(
                         sizeof( struct BD_List ) ) ;
    if ( ans != NULL ) {
        ans->prev = p ;
        ans->data = d ;
        ans->next = n ;
    }
    return ans ;
}
void main() {
    struct BD_List* top ;
    struct BD_List* p ;

    // 順方向のポインタでリストを生成
    top = bd_cons( NULL , 1 ,
          bd_cons( NULL , 2 ,
          bd_cons( NULL , 3 , NULL ) ) ) ;
    // 逆方向のポインタを埋める
    top->next->prev = top ;
    top->next->next->prev = top->next ;

    // リストを辿る処理
    for( p = top ; p->next != NULL ; p = p->next )
        printf( "%d\n" , p->data ) ;
    for(         ; p->prev != NULL ; p = p->prev )
        printf( "%d\n" , p->data ) ;
}

双方向リストの関数作成

以上の説明で、双方向の基礎的なプログラムの意味が分かった所で、練習問題。

先のプログラムでは、1,2,3 を要素とするリストを、ナマで記述していた。実際には、どんなデータがくるか分からないし、指定したポインタ p の後ろに、データを1件挿入する処理 bd_insert( p , 値 ) , また、p の後ろのデータを消す処理 bd_delete( p ) を書いてみよう。

// 双方向リストの指定場所 p の後ろに、値 d を要素とするデータを挿入せよ。
void bd_insert( struct BD_List* p , int d ) {
   struct BD_List*n = bd_cons( p , d , p->next ) ;
   if ( n != NULL ) {
      p->next->prev = n ;
      p->next = n ;
   }
}

// 双方向リストの指定場所 p の後ろのデータを消す処理は?
void bd_delete( struct BD_List* p ) {
   struct BD_List* d = p->next ;
   d->next->prev = p ;
   p->next = d->next ;
   free( d ) ;
}

// この手のリスト処理のプログラムでは、命令の順序が重要となる。
// コツとしては、修正したい箇所の遠くの部分を操作する処理から
// 書いていくと間違いが少ない。

番兵と双方向循環リスト

前述の bd_insert() だが、データの先頭にデータを挿入したい場合は、どう呼び出せば良いだろうか?
bd_insert() で、末尾にデータを挿入する処理は、正しく動くだろうか?

同じく、bd_delete() だが、データの先頭のデータを消したい場合は、どう呼び出せば良いだろうか?
また、データを消す場合、最後の1件のデータが消えて、データが0件になる場合、bd_delete() は正しく動くだろうか?

こういった問題が発生した場合、データが先頭・末尾で思ったように動かない時、0件になる場合に動かない時、特別処理でプログラムを書くことは、プログラムを読みづらくしてしまう。そこで、一般的には 循環リストの時にも紹介したが、番兵(Sentinel) を置くことが多い。

しかし、先頭用の番兵、末尾用の番兵を2つ用意するぐらいなら、循環リストにした方が便利となる。このような双方向リストでの循環した構造は、双方向循環リスト(bi-directional ring list)と呼ばれる。

deque(両端キュー)

この双方向循環リストを使うと、(1)先頭にデータを挿入(unshift)、(2)先頭のデータを取り出す(shift)、(3)末尾にデータを追加(push)、(4)末尾のデータを取り出す(pop)、といった処理が簡単に記述できる。この4つの処理を使うと、単純リスト構造で説明した、待ち行列(queue)やスタック(stack) が実現できる。この特徴を持つデータ構造は、先頭・末尾の両端を持つ待ち行列ということで、deque (double ended queue) とも呼ばれる。

理解確認

  • 双方向リストとはどのようなデータ構造か図を示しながら説明せよ。
  • 双方向リストの利点と欠点はなにか?
  • 番兵を用いる利点を説明せよ。
  • deque の機能と、それを実現するためのデータをリストを用いて実装するには、どうするか?
  • 双方向リストが使われる処理の例としてどのようなものがあるか?

データベースガイダンス2021

インターネットの情報量

インターネット上の情報量の話として、2010年度に281EB(エクサバイト)=281✕1018B(参考:kMGTPEZY)で、2013年度で、1.2 ZB(ゼタバイト)=1.2✕1021B という情報があった。ムーアの法則の「2年で2倍」の概算にも、それなりに近い。 では、今年2021年であれば、どのくらいであろうか?

しかし、これらの情報をGoogleなどで探す場合、すぐにそれなりに情報を みつけてくれる。これらは、どの様に実装されているのか?

Webシステムとデータベース

まず、指定したキーワードの情報を見つけてくれるものとして、 検索システムがあるが、このデータベースはどのようにできているのか?

Web創成期の頃であれば、Yahooがディレクトリ型の検索システムを構築 してくれている。(ページ作者がキーワードとURLを登録する方式) しかし、ディレクトリ型では、自分が考えたキーワードではページが 見つからないことが多い。

そこで、GoogleはWebロボット(クローラー)による検索システムを構築した。 Webロボットは、定期的に登録されているURLをアクセスし、 そのページ内の単語を分割しURLと共にデータベースに追加する。 さらに、ページ内にURLが含まれていると、そのURLの先で、 同様の処理を再帰的に繰り返す。

これにより、巨大なデータベースが構築されているが、これを普通のコンピュータで実現すると、処理速度が足りず、3秒ルール/5秒ルール (Web利用者は次のページ表示が3秒を越えると、次に閲覧してくれない)で能力不足になってしまう。だからこそ、これらを処理するには負荷分散が重要となる。

Webシステムの負荷分散

一般的に、Webシステムを構築する場合には、 1段:Webサーバ、2段:動的ページ言語、3段:データベースとなる場合も 多い。この場合、OS=Linux,Web=Apache,DB=MySQL,動的ページ生成言語=PHPの組合せで、 LAMP構成とする場合も多い。

一方で、大量のデータを処理するDBでは、フロントエンド,セカンダリDB(スレーブDB),プライマリDB(マスタDB)のWebシステムの3段スキーマ構成となることも多い。
フロントエンドは、大量のWebユーザからの問合せを受ける部分であり、必要に応じてセカンダリDBに問合せを行う。
大量のユーザからの問合せを1台のデータベースシステムで捌くには処理の負荷が高い場合、複数のデータベースで負荷分散を行う。プライマリDBは、複数のデータベースシステムの原本となるべきデータを保存される。負荷分散の為に分散されたセカンダリDBは、プライマリDBと内容の同期をとりながらフロントエンドからの問合せに応答する。

データベースシステム

データベースには、ファイル内のデータを扱うためのライブラリの BerkleyDB といった場合もあるが、複雑なデータの問い合わせを実現する 場合には、リレーショナル・データベース(RDB)を用いる。 RDBでは、データをすべて表形式であらわし、SQLというデータベース 問い合わせ言語でデータを扱う。 また、問い合わせは、ネットワーク越しに実現可能であり、こういった RDBで有名なものとして、Oracle , MySQL , PostgreSQL などがある。 単一コンピュータ内でのデータベースには、SQLite などがある。

リレーショナルデータベースの串刺し

商品名 単価 個数 価格
りんご 200 2 400
みかん 50 6 300
アイスクリーム 125 1 125
みかん 50 3 150

このような表データでは、たとえば「みかん」の単価が変更になると、2行目,4行目を変更しなければいけなくなる。巨大な表の場合、これらの変更は大変。

そこで、この表を2つに分類する。

単価表
商品ID 商品名 単価
1010 りんご 125
1011 みかん 50
2101 アイスクリーム 125
販売表
商品ID 個数
1010 2
1011 6
2101 1
1011 3
必要に応じて、2つの表から、以下のような SQL の命令で、データを抽出する。

select 単価表.商品名, 単価表.単価, 販売表.個数, 単価表.単価*販売表.個数
    from 単価表, 販売表 ;

 

データベースに求められるのACID特性

データベースシステムと呼ばれるには、ACID特性が重要となる。(次に述べるデータベースが無かったら…を参照)

  • A: 原子性 (Atomicity) – 処理はすべて実行するか / しない のどちらか。
  • C: 一貫性 (Consistency) – 整合性とも呼ばれ、与えられたデータのルールを常に満たすこと。
  • I: 独立性 (Isolation) – 処理順序が違っても結果が変わらない。それぞれの処理が独立している。
  • D: 永続性 (Durability) – データが失われることがない(故障でデータが無くならないとか)

しかし、RDBでは複雑なデータの問い合わせはできるが、 大量のデータ処理のシステムでは、フロントエンド,セカンダリDB,プライマリDB の同期が問題となる。この複雑さへの対応として、最近は NoSQL(RDB以外のDB) が 注目されている。(例: Google の BigTable)

データベースが無かったら

これらのデータベースが無かったら、どのようなプログラムを作る 必要があるのか?

情報構造論ではC言語でデータベースっぽいことをしていたが、 大量のデータを永続的に扱うのであれば、ファイルへのデータの読み書き 修正ができるプログラムが必要となる。

こういったデータをファイルで扱う場合には、1件のデータ長が途中で 変化すると、N番目のデータは何処?といった現象が発生する。 このため、簡単なデータベースを自力で書くには、1件あたりのデータ量を 固定し、lseek() , fwrite() , fread() などの 関数でランダムアクセスのプログラムを書く必要がある。

また、データの読み書きが複数同時発生する場合には、排他処理(独立性)も 重要となる。例えば、銀行での預け金10万の時、3万入金と、2万引落としが 同時に発生したらどうなるか? 最悪なケースでは、 (1)入金処理で、残金10万を読み出し、 (2)引落し処理で、残金10万を読み出し、 (3)入金処理で10万に+3万で、13万円を書き込み、 (4)引落し処理で、残金10万-2万で、8万円を書き込み。 で、本来なら11万になるべき結果が、8万になるかもしれない。

さらに、コンピュータといってもハードディスクの故障などは発生する。 障害が発生してもデータの原子性永続性を保つためには、バックアップや 障害対応が重要となる

専攻科の履修登録の確認作業

特例認定の専攻科で、学位授与機構の学位授与してもらうために、専攻科2年の学生さんの履修計画書のアップロードの期間となっている。履修科目の間違い(履修時期)のチェックも必要だけど、大量の行のチェックは大変。

履修登録のWebシステムで、履修科目のファイルを CSV 出力させた「申請者科目データ.csv」を、他の学生と比較してみる。

$ nkf -Lu -w 申請者科目データ.csv
  | awk -F, '{print $4,$9,$16}' > aa.csv
     nkf -Lu (行末文字コードを¥n)
         -w (文字コードをUTF8に変更)
     awk -F, (コンマで区切る)
         '{print $4,$9,$16}' (科目名,履修時期,履修/未習得)だけ抽出

$ diff -u aa.csv bb.csv | grep -v '^ ' | grep -v "0"$
     diff -u        違いを出力
     grep -v '^ '   先頭が空白の行を削除(違いがなかった)
     grep -v '"0"$' 行末が"0"を行を削除(履修していない)

キャンパスツアー2021

今日は、福井高専のオープンキャンパスです。「キャンパスツアー」ということで、各学科の展示を次々と見学します。

電子情報工学科では、各卒研室の中からいくつかのテーマにて発表してもらいます。

以前であれば、中学生と保護者の方が一緒に見学してもらっていましたが、コロナ対策ということで保護者の方には、Teamsのリモート会議の機能を使って別室にて各学科の発表会場の内容を見学してもらっています。

{CAPTION}

{CAPTION}

データと誤差(クラフテックラボ)

電子情報工学科のジュニアドクター養成講座・クラフテックラボでは、9/12(日)に、データと誤差の講座を行いました。
ストップウォッチでの時間の測定の実験を通して、誤差のズレやばらつきについて考えてもらう内容でした。
{CAPTION}

{CAPTION}