ホーム » スタッフ » 斉藤徹 » 講義録 » 情報制御基礎 » コンピュータと2進数

2019年4月
« 3月    
 123456
78910111213
14151617181920
21222324252627
282930  

最近の投稿(電子情報)

アーカイブ

カテゴリー

コンピュータと2進数

3年の情報制御基礎の授業の一回目。この授業では、情報系以外の学生も受講する。昨年度は、プログラムも作る話から、プログラムの基礎の話もしたけど、他学科からの学生さんには難しい所もあったので、共通的な話題を増やす予定。

出席確認は、右側のQRコードを撮影するか、QRコードをクリックして、Microsoft Forms で出席を報告してください。
もし、Office365にLoginできない場合は、直接出席を伝えて下さい。

情報制御基礎のシラバス

情報制御基礎では、ここに上げたシラバスに沿って授業を行う。

基本的に、センサーから読み取ったデータを使って動くシステムを作る場合の、知識ということでアナログ量・デジタル量の話から、移動平均やデータ差分といった数値処理や、そこで求まった値を制御に用いるための基礎的な話を行う。

コンピュータと組み込み系

最近では、コンピュータといっても様々な所で使われている。(1)科学技術計算用の大型コンピュータやインターネットの処理を行うサーバ群、(2)デスクトップパソコン、(3)タブレットPCやスマートフォンのような端末、(4)電化製品の中に収まるようなワンチップコンピュータなどがある。


ブレードサーバ

ワンチップコンピュータ

身近で使われている情報制御という点では、(4)のような小型のコンピュータも多く、こういったものは組み込み型コンピュータとも呼ばれる。しかし、こういったコンピュータは、小さく機能も限られているので、

  • 組み込み系では、扱える数値が8bit や 16bit といった精度しかなかったり、
  • 複雑な計算をするには、処理時間がかかったりする

ため、注意が必要である。

この情報制御基礎の授業では、組み込み系のコンピュータでも数値を正しく扱うための知識や、こういった小さいコンピュータで制御を行うことを踏まえた知識を中心に説明を行う。

2進数と10進数

コンピュータの中では、電圧が高い/低いといった状態で0と1の2通りの状態を表し、その0/1を組み合わせて、大きな数字を表す(2進数)。

練習として、2進数を10進数で表したり、10進数を2進数に直してみよう。

N進数を10進数に変換

N進数で “abcde” があったとする。(2進数で”10101″とか、10進数で”12345″とか)

この値は、を意味する。

(例1)

(例2)

10進数をN進数に変換

N進数のは、であることから、値をNで割った余りを求めると、N進数の最下位桁eを取り出せる。

このため、10進数で与えられた35を2進数に変換するのであれば、35を2で次々と割った余りを、下の桁から書きならべれば2進数100011)2が得られる。

実数の場合

途中に小数点を含むN進数のab.cde)Nであれば、を意味する。ここで、小数点以下だけを取り出した、0.cde)Nを考えると、の値に、Nをかけると、
となる。よって、小数部にNをかけると、整数部分に小数点以下1桁目が取り出せる

このため、10進数で与えられた、0.625を2進数に変換するのであれば、0.625に次々と2をかけて、その整数部を上の桁から書きならべれば、2進数0.101)2が得られる。

ただし、10進数で0.1という値で、上記の計算を行うと、延々と繰り返しが発生する。つまり、無限小数になるので注意せよ。

2の補数と負の数

コンピュータの中で引き算を行う場合には、2の補数がよく使われる。2の補数とは、2進数の0と1を入替えた結果(1の補数)に、1を加えた数である。

元の数に2の補数を加えると(2進数が8bitの数であれば)、どのような数でも1,0000,0000という値になる。この先頭の9bit目が必ずはみ出し、この値を覚えないのであれば、元の数+2の補数=0とみなすことができる。このことから、2の補数= (-元の数) であり、負の数を扱うのに都合が良い。

練習問題

(1) 自分の誕生日で、整数部を誕生日の日、小数点以下を誕生日の月とした値について、2進数に変換せよ。(例えば、2月7日の場合は、”7.02″という小数点を含む10進数とする。)

変換の際には、上の説明の中にあるような計算手順を示し、その2進数が元の値を表していることを確認すること。
小数点以下は、最大7桁まで求めれば良い。

(2) 自分の誕生日の日と、自分の学籍番号の下2桁の値を加えた値について、8bitの2進数で表わせ。(2月7日生まれの出席番号13番なら7+13=21)

その後、8bitの2進数として、2の補数を求めよ。