ホーム » 2019 » 4月 » 16

日別アーカイブ: 2019年4月16日

2019年4月
« 3月    
 123456
78910111213
14151617181920
21222324252627
282930  

最近の投稿(電子情報)

アーカイブ

カテゴリー

ループ処理時間とオーダー記法と再帰

先週に、単純繰り返し処理の時間分析をやったので、次のステップに。

2分探索法の処理時間

データを探す処理において、単純検索より速い方法ということで、2分探索法の処理速度見積もりを行う。

// 2分探索法 O(log N)
int a[ 1000 ] = { 対象となるデータ } ;
int size = N ;  // データ数 N
int L = 0 ;     // L=下限のデータの場所
int R = size ;  // R=上限のデータ+1の場所
while( L != R ) {
   int M = (L + R) / 2 ;  // 計算は整数型で行われることに注意
   if ( a[M] == key )     // 見つかった
      break ;
   else if ( a[M] < key ) // |L         |M.         |R
      L = M + 1 ;         // |----------|-+---------|
   else                   // |L---------|M|
      R = M ;             //              |M+1------|R
}

上記のようなプログラムの場合、処理に要する時T(N)は、

 # Mは繰り返し回数

処理は、対象となるデータ件数が繰り返し毎に半分となり、対象データ件数が1件になれば処理が終わる。このことから、

となることから、 の関係が成り立つ。よって、は、以下のように表せる。

単純なソート(最大選択法)の処理時間

次に、並べ替え処理の処理時間について考える。

int a[ 1000 ] = { 対象となるデータ } ;
int size = N ;

for( int i = 0 ; i < size - 1 ; i++ ) {
    int tmp ;
    // i..size-1 の範囲で一番大きいデータの場所を探す
    int m = i ;
    for( int j = i + 1 ; j < size ; j++ ) {
        if ( a[j] > a[m] )
            m = j ;
    }
    // 一番大きいデータを先頭に移動
    tmp = a[i] ;
    a[i] = a[m] ;
    a[m] = tmp ;
}

このプログラムの処理時間T(N)は… (参考 数列の和の公式)

となる。

オーダー記法

ここまでのアルゴリズムをまとめると、処理時間に大きく影響する部分は、最後の項の部分であり、特にその項の係数は、コンピュータの処理性能に影響を受けるが、アルゴリズムの優劣を考える場合は、それぞれ、 の部分の方が重要である。

単純サーチ
2分探索法
最大選択法

そこで、アルゴリズムの優劣を議論する場合は、この処理時間の見積もりに最も影響する項で、コンピュータの性能によって決まる係数を除いた部分を抽出した式で表現する。これをオーダー記法と言う。

単純サーチ オーダーNのアルゴリズム
2分探索法 オーダー log N のアルゴリズム
最大選択法 オーダー N2 のアルゴリズム

練習問題

  1. コンピュータで2分探索法で、データ100件で10[μsec]かかったとする。
    データ10000件なら何[sec]かかるか?
    (ヒント: 底変換の公式)
  2. の処理時間を要するアルゴリズムを、オーダー記法で書くとどうなるか?また、このようなアルゴリズムの例を答えよ。
  3. の処理時間を要するアルゴリズムを、オーダー記法で書くとどうなるか?
    (ヒント: ロピタルの定理)

再帰呼び出しの予習

若干、時間が余ったので、再帰呼出しと簡単な処理の例を説明する。

最初に定番の階乗(fact)

次に、フィボナッチ数列の場合

予備実験2 パズル問題

プログラミングコンテストの競技部門では、パズルのような組み合わせ問題が 出題されることが多い。そこで、この予備実験では、きわめて単純なパズル問題(組み合わせ問題) のプログラムについて扱う。

組み合わせ問題の基礎

簡単な問題として、「100未満の整数の値を3つ選び、その値を辺の長さとした場合、 直角三角形となるものをすべて表示する。」について考える。

一番簡単な方法は、以下となるであろう。

#include <stdio.h>
#include <math.h>
#include <time.h>

// 整数比の直角三角形の一覧を求める。
void integer_triangle( int n ) {
   for( int a = 1 ; a < n ; a++ ) {
      for( int b = 1 ; b < n ; b++ ) {
         // 一番ダサい方法
         for( int c = 1 ; c < n ; c++ ) {
            if ( a*a + b*b == c*c ) {
               printf( "%d %d %d\n" , a , b , c ) ;
            }
         }
      }
   }
}
int main() {
   integer_triangle( 100 ) ;
   return 0 ;
}

しかしこのプログラムの欠点としては、100×100×100回のループで無駄な処理が多い。

ループ回数を減らすだけなら、最も内側の処理を、計算で整数値か確認すればいい。

void integer_triangle( int n ) {
   for( int a = 1 ; a < n ; a++ ) {
      for( int b = 1 ; b < n ; b++ ) { // ココも改良できるよね?
         int d = a*a + b*b ;
         int c = (int)sqrt( d ) ; // 斜辺Cの整数値を求め、改めて確認する。
         if ( c*c == d ) {
            printf( "%d %d %d\n" , a , b , c ) ;
         }
      }
   }
}

(1) 計算誤差の問題を考えてみよう。

たとえば、3:4:5の直角三角形で、3*3+4*4 = 25 だが、sqrt(25)は実数で計算するから、 計算誤差で4.99999で求まったらどうなるだろうか?

1~100までの数値で、”int a = sqrt( (double)(i*i) ) ;” を計算してみて、 異なる値が求まることはあるか? 多少の計算誤差があっても正しく処理が行われるにはどうすればいいか、考えてみよう。

(2) 無駄な答えについて考えてみよう。

このプログラムの答えでは、簡単な整数比の答えの「整数倍の答え」も表示されてしまう。 たとえば、(3:4:5)の答えのほかに、(6:8:10)も表示される。 こういった答えを表示しないようにするにはどうすればよいか?

また、この2つのプログラムの処理時間を実際に比べてみる。

int main() {
   time_t start , end ;
   // time() 関数は、秒数しか求まらないので、
   // あえて処理を1000回繰り返し、数秒かかる処理にする。
   start = time( NULL ) ;
   for( int i = 0 ; i < 1000 ; i++ ) {
      // ただし、関数内のprintfをコメントアウトしておくこと
      integer_triangle( 100 ) ;
   }
   end = time( NULL ) ;
   printf( "%lf\n" , difftime( end , start ) ) ;
   return 0 ;
}

再帰プログラミング

組み合わせ問題では、forループの多重の入れ子で問題を解けない場合が多い。 (書けないことはないけど無駄なループで処理が遅くなるか、入れ子段数が可変にできない。)

こういった場合には、再帰プログラミングがよく利用される。 もっとも簡単な再帰の例として、階乗のプログラムを考える。 通常であれば、以下のような for ループで記述することになるだろう。

// 階乗の計算
int fact( int x )
{  // ループ
   int f = 1 ;
   for( int i = 2 ; i <= x ; i++ )
      f = f * i ;
   return f ;
}

再帰呼び出しでは、関数の処理の中に、自分自身の関数呼び出しが含まれる。 また、無限に自分自身を呼び出したら処理が止まらないので、 問題を一つ小さくして、これ以上小さくできないときは処理を止めるように記述する。

int fact( int x )
{  // 再帰呼び出し
   if ( x <= 1 )
      return 1 ;
   else
      return x * fact( x - 1 ) ;
}

ここ以降は、指定長さを指定辺の組み合わせで作ると、Flood-fill の選択とする。

指定長を指定辺の組み合わせで作る

再帰を使った簡単なパズル問題として、以下のプログラムを作成したい。

配列の中に、複数の辺の長さが入っている。これを組み合わせて指定した長さを作れ。 使用する辺はできるだけ少ない方がよい。
int a[] = { 4 , 5 , 2 , 1 , 3 , 7 } ;
(例) 辺の長さ10を作るには、(5,4,1)とか(7,3)などが考えられる。
これは、ナップサック問題の基本問題で、容量の決まったナップサックに最大量入れる組合せを求めるのと同じである。

このプログラムを解くには…

10 を [4,5,2,1,3,7] で作るには...
 (0) 6=10-4 を [5,2,1,3,7]で作る。
 (1) 5=10-5 を [4,2,1,3,7]で作る。
 (2) 8=10-2 を [5,4,1,3,7]で作る。
 (3) 9=10-1 を [5,2,4,3,7]で作る。
 (4) 7=10-3 を [5,2,1,4,7]で作る。
 (5) 3=10-7 を [5,2,1,3,4]で作る。

そこで、ここまでの考えを、以下のようなプログラムで記述してみる。

// 指定されたデータを入れ替える。
void swap( int*a , int*b )
{  int x = *a ;
   *a = *b ;
   *b = x ;
}
void check( int array[] , int size , int len , int n )
{
   // array[] 配列
   // size    配列サイズ
   // len     作りたい長さ
   // n       使った個数
   for( int i = n ; i < size ; i++ ) {
      // i番目を先頭に...
      swap( &array[ n ] , &array[ i ] ) ;
      printf( "check( array , %d , %d , %d )\n" ,
              size , len - array[ n ] , n+1 ) ;
      // 最初のswapでの変更を元に戻す。
      swap( &array[ i ] , &array[ n ] ) ;
   }
}
int main() [
   int a[] = { 4 , 5 , 2 , 1 , 3 , 7 } ;
   check( a , 6 , 10 , 0 ) ;
}

(1) これを再帰呼び出しにしてみよう。どう書けばいい?

void check( int array[] , int size , int len , int n )
{
   // array[] 配列
   // size    配列サイズ
   // len     作りたい長さ
   // n       使った個数
   if ( len < 0 ) {
      // 指定した丁度の長さを作れなかった。
      ;
   } else if ( len == 0 ) {
      // 指定した長さを作れたので答えを表示。
      for( int i = 0 ; i < n ; i++ ) {
         printf( "%d " , array[ i ] ) ;
      }
      printf( "\n" ) ;
   } else {
      // 問題を一つ小さくして再帰。
      for( int i = n ; i < size ; i++ ) {
         swap( &array[ n ] , &array[ i ] ) ;
         printf( "check( array , %d , %d , %d )\n" ,
                 size , len - array[ n ] , n+1 ) ;
         check( array , size , len - array[ n ] , n + 1 ) ;
         swap( &array[ i ] , &array[ n ] ) ;
      }
   }
}

(2) 少ない組み合わせの方がポイントが高い場合には、プログラムをどう変更する?
(3) 答えが1つだけで良い場合は、プログラムをどう変更する?
(4) このプログラムでは、冗長な答えがあるか?ないか?検討せよ。
(5) 前設問の整数比直角三角形のプログラムで、冗長な答えを削除するプログラムを作成せよ。
# ただし、(2)〜(5)は、演習の実験の時間内でできる範囲とする。

Flood fill アルゴリズム

前の問題は、今年度のプログラミングコンテストの課題のパズルとは、方向性が違うので、今年度のプロコンの競技部門に近いパズルネタで演習。(Wikipedia Flood-fill参照)

以下の image のような2次元配列が与えられたら、指定座標(x,y)を中心に周囲を塗りつぶす処理を作成せよ。

include <stdio.h>

// *は壁 SPCは白 この領域の指定位置を#で塗りつぶす。                            
char image1[10][10] = { // (4,4)始点で塗りつぶし後
        "*********" ,   // ********* 
        "*   *   *" ,   // *   *###*
        "*   *   *" ,   // *   *###*
        "*  *    *" ,   // *  *####*
        "***   ***" ,   // ***###***
        "*    *  *" ,   // *####*  *
        "*   *   *" ,   // *###*   *
        "*   *   *" ,   // *###*   *
        "*********" ,   // *********
} ;

char image2[10][10] = { // 応用問題用の画像例
        "*********" ,   //  *   のような隙間は通り抜けられる
        "*   *   *" ,   // *    ようにするにはどうすればいい?
        "*  **   *" ,   //   **
        "* **    *" ,   //  **  これは通り抜けられない
        "***   ***" ,   // **
        "*    *  *" ,
        "*   *   *" ,
        "*   *   *" ,
        "*********" ,
} ;

// 盤面を表示                                                                   
void print_image( char image[10][10] ) {
  for( int y = 0 ; y < 9 ; y++ ) {
    for( int x = 0 ; x < 9 ; x++ ) {
      printf( "%c" , image[y][x] ) ;
    }
    printf( "\n" ) ;
  }
}

// 再帰呼び出しを使った flud_fill アルゴリズム                                  
void flood_fill( char image[10][10] , int x , int y , char fill ) {
  // 指定座標が空白なら
  if ( image[y][x] == ' ' ) {
    // その座標を埋める
    image[y][x] = fill ;
    //////////////////////////////////////
    // ここに周囲をflud_fillする処理を書く  //
    ////////////////////////////////////// 
  }
}

int main() {
  print_image( image1 ) ;
  flood_fill( image1 , 4 , 4 , '#' ) ;
  print_image( image1 ) ;
  return 0 ;
}

応用問題

Wikipediaのflood-fill のプログラムの説明のアルゴリズムでは、左図黒のような斜めに並んだブロックは、境界として通り抜けられないようにつくられている。

そこで、斜めに並んだブロックは通り抜けられるルールとした場合のプログラムを記述せよ。

予備実験1 データベースの操作

データベースの基本操作

データベースをWebから操作

練習問題

  1. 上記の db_query.php を改良して、ユーザ名を入力してもらい、その名前のデータを表示するプログラムに改造する。
  2. おなじく、年齢を入力したら、指定した年齢以上の人のデータを表示するプログラムに改良する。