Visual Studio Code で印刷
実験や授業課題のレポート提出で、プログラムを印刷したものを提出してくれるけど、行を移動しながら何度もスクリーンキャプチャで保存した画像ファイルをWordに貼り付けて提出している人が多い。
いままでなら、「秀丸エディタで印刷してよ…」とか言ってたけど、最近は Visual Studio Code を利用しているみたいで、「プログラムの印刷の仕方がわからない」という人が多いようだ。
実際、Visual Studio Code はたまにしか使わないけど、確かに基本機能の中には印刷機能がないな….
今時、プログラムリストなんて紙媒体で印刷しないもんなんだろうけど、プログラム課題のレポートなら、コードは証拠だからな。
Visual Studio Code の PrintCode
こういう場合は、Visual Studio Code の拡張機能の PrintCode をインストールすればいい。
印刷する時は、F1 キーを押して、拡張コマンドの入力で printcode と打てば印刷される。
ただし、PrintCode は JavaScript を使って HTML を生成し印刷を行うため、Windowsでデフォルトブラウザが Internet Explorer の場合は動かない。このためデフォルトブラウザの変更により Chrome などを使う様に変更しておく必要あり。
Sublime Text なら Print to HTML
同じく、エディタが Sublime Text を使っているのなら、これも印刷機能が付いていないので、”Print to HTML”パッケージをインストールし、あとは、Shift+Alt+P で HTML 用に出力できるのでブラウザ側で印刷を行う。
AVL木と2分ヒープ
前回、2分木へのデータ追加の説明と、演習課題を行っていたが、演習時間としては短いので、今日も前半講義で残り時間は演習とする。
2分木へのデータ追加と不均一な木の成長
先週の講義で説明していた、entry() では、データを追加すべき末端を探し、追加する処理であった。
しかし、前回のプログラムで、以下のような順序でデータを与えたら、どのような木が出来上がるであろうか?
- 86, 53, 11 – 降順のデータ
- 12, 24, 42 – 昇順のデータ
この順序でデータが与えられると、以下のような木が出来上がってしまう。このような木では、データを探しても1回の比較でもデータ件数が1つ減るだけで、O(N)となってしまう。通常のデタラメな順序でデータが与えられれば、木はほぼ左右均等に成長するはずである。
AVL木
このような、不均一な木が出来上がっても、ポインタの繋ぎ変えで改善が可能となる。例えば、以下のような木では、赤の左側に偏っている。
このような場合でも、最初、青の状態であっても、不均一な部分で赤のようなポインタの繋ぎ変えを行えば、木の段数を均一に近づけることができる。この例では、11,65,92の木が、右回転して 11 の木の位置が上がっている。(右回転)
この様に、左右の枝の大きさが不均一な場所を見つけ、右回転(もしくは左回転)を行う処理を繰り返すことで、段数が均一な2分木に修正ができる。この様な処理でバランスの良い木に修正された木は、AVL木と呼ばれる。
理解確認
- 木の根からの段数を求める関数 tree_depth() を作成せよ。
例えば、上のAVL木の説明の図であれば、4段なので4を返すこと。 - malloc() 関数を使うために必要な #include のヘッダファイルは何か?
// 木の段数を数える関数 _____ tree_depth( _______________ p ) { if ( p == NULL ) { return _____ ; } else { int d_L = ______________ ; int d_R = ______________ ; if ( d_L > d_R ) return _____ ; else return _____ : } } void main() { printf( "%d¥n" , tree_depth( top ) ) ; }
2分ヒープ
2分探索木では、1つのノードにつき2つのポインタを持ちメモリの使用が多い。配列を用いて2分探索木を作る方法として、2分ヒープがある。通常の2分探索法のように配列内に昇順でデータを保存すると、途中にデータを挿入する場合、データを後ろにずらす必要があるため、O(N)の処理時間を要する。しかし、2分木の上から番号を以下の様に振ると、i番目の、左の枝は 2*i+1 番目、右の枝は 2*i+2 番目であることが判る。
このような配列の使い方を、2分ヒープと呼ぶ。この方式ではれば、アルゴリズムの説明は省略するが、O(log(N))で挿入が可能となる。
int a[ 7 ] = { 53 , 11 , 86 , 10 , 22 , 65 , 92 } ; void print_heap( int array[] , int idx , int size ) { if ( idx < size ) { // 左の枝を表示 print_heap( array , 2*idx + 1 , size ) ; // 真ん中の枝を表示 printf( "%d " , array[ idx ] ) ; // 右の枝を表示 print_heap( array , 2*idx + 2 , size ) ; } } void main() { print_heap( a , 0 , 7 ) ; }
2分探索木にデータ追加と演習
2分探索木にデータを追加
前回の授業では、データの木構造は、補助関数 tcons() により直接記述していた。実際のプログラムであれば、データに応じて1件づつ木に追加するプログラムが必要となる。この処理は以下のようになるだろう。
struct Tree* top = NULL ; // 2分探索木にデータを追加する処理 void entry( int d ) { struct Tree** tail = &top ; while( *tail != NULL ) { if ( (*tail)->data == d ) // 同じデータが見つかった break ; else if ( (*tail)->data > d ) tail = &( (*tail)->left ) ; // 左の枝に進む else tail = &( (*tail)->right ) ; // 右の枝に進む } if ( (*tail) == NULL ) *tail = tcons( d , NULL , NULL ) ; } int main() { char buff[ 100 ] ; int x ; while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) if ( sscanf( buff , "%d" , &x ) != 1 ) break ; entry( x ) ; return 0 ; }
このプログラムでは、struct Tree** tail というポインタへのポインタ型を用いている。tail が指し示す部分をイメージするための図を以下に示す。
理解確認
- 関数entry() の14行目の if 判定を行う理由を説明せよ。
- 同じく、8行目の tail = &( (*tail)->left ) の式の各部分の型について説明せよ。
- sscanf() の返り値を 1 と比較している理由を説明せよ。
- entry() でデータを格納する処理時間のオーダを説明せよ。
// 前述プログラムは、データ追加先が大域変数なのがダサい。 // 局所変数で追加処理ができるように、したいけど... void entry( struct Tree* top , int d ) { struct Tree** tail = &top ; while( *tail != NULL ) { : // 上記の entry() と同じとする } void main() { // 追加対象の top は局所変数 struct Tree* top = NULL ; char buff[ 100 ] ; int x ; while( fgets(buff,sizeof(buff),stdin) != NULL ) { if ( sscanf( buff , "%d" , &x ) != 1 ) break ; entry( top , x ) ; } }上記のプログラム↑は動かない。なぜ?
このヒントは、このページ末尾に示す。
演習課題
以下のようなデータを扱う2分探索木のプログラムを作成せよ。以下の箇条書き番号の中から、(出席番号 % 3+1)のデータについてプログラムを作ること。
- 名前(name)と電話番号(phone)
- 名前(name)と誕生日(year,mon,day)
- 名前(name)とメールアドレス(mail)
プログラムは以下の機能を持つこと。
- 1行1件でデータを入力し、2分木に追加できること。
- 全データを昇順(or降順)で表示できること。
- 検索条件を入力し、目的のデータを探せること。
レポートでは、(a)プログラムリスト,(b)その説明,(c)動作検証結果,(d)考察 を記載すること。考察のネタが無い人は、このページの理解確認の内容について記述しても良い。
// プログラムのおおまかな全体像の例 struct Tree { // // この部分を考えて // 以下の例は、名前と電話番号を想定 } ; struct Tree* top = NULL ; void tree_entry( char n[] , char ph[] ) { // n:名前,ph:電話番号 を追加 } void tree_print( struct Tree* p ) { // 全データを表示 } struct Tree* tree_search_by_name( char n[] ) { // n:名前でデータを探す } int main() { char name[ 20 ] , phone[ 20 ] ; char buff[ 1000 ] ; struct Tree* p ; // データを登録する処理(空行を入力するまで繰り返し) while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) { if ( sscanf( buff , "%s%s" , name , phone ) != 2 ) break ; // 入力で、2つの文字列が無い場合はループを抜ける tree_entry( name , phone ) ; } // 全データの表示 tree_print( top ) ; // データをさがす while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) { if ( sscanf( buff , "%s" , name ) != 1 ) break ; // 入力で、1つの文字列が無い場合はループを抜ける if ( (p = tree_search_by_name( name )) == NULL ) printf( "見つからない¥n" ) ; else printf( "%s %s¥n" , p->name , p->phone ) ; } return 0 ; }
動かないプログラムのヒント
// 前述プログラムは、データ追加先が大域変数なのがダサい。 // 局所変数で追加処理ができるように、したいけど... // ちなみに、こう書くと動く // Tree*を返すように変更 struct Tree* entry( struct Tree* top , int d ) { : // 最初の entry と同じ : return top ; } void main() { // 追加対象のポインタ struct Tree* top = NULL ; while( ... ) { : // entry() の返り値を top に代入 top = entry( top , x ) ; } }
fgets()とsscanf()による入力の解説
前述のプログラムの入力では、fgets() と sscanf() による処理を記載した。この関数の組み合わせが初見の人も多いと思うので解説。
// scanf() で苦手なこと -------------------------// // scanf() のダメな点 // (1) 何も入力しなかったら...という判定が難しい。 // (2) 間違えて、abc みたいに文字を入力したら、 // scanf()では以後の入力ができない。(入力関数に詳しければ別だけどさ) int x ; while( scanf( "%d" , &x ) == 1 ) { entry( x ) ; } // scanf() で危険なこと -------------------------// // 以下の入力プログラムに対して、10文字以上を入力すると危険。 // バッファオーバーフローが発生する。 char name[ 10 ] ; scanf( "%s" , name ) ; // 安全な入力 fgets() ---------------------------// // fgets() は、行末文字"¥n"まで配列 buff[]に読み込む。 // ただし、sizeof(buuf) 文字より長い場合は、途中まで。 char buff[ 100 ] ; while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) { // buff を使う処理 } // 文字列からデータを抜き出す sscanf() -------------// // sscanf は、文字列の中から、データを抜き出せる。 // 入力が文字列であることを除き、scanf() と同じ。 char str[] = "123 abcde" ; int x ; char y[10] ; sscanf( str , "%d%s" , &x , y ) ; // x=123 , y="abcde" となる。 // sscanf() の返り値は、2 (2個のフィールドを抜き出せた)
理解確認
- 標準入力からの1行入力関数 gets() 関数が危険な理由を説明せよ。
2分探索木
配列やリスト構造のデータの中から、目的となるデータを探す場合、配列であれば2分探索法が用いられる。これにより、配列の中からデータを探す処理は、O(log N)となる。(ただし事前にデータが昇順に並んでいる必要あり)
// 2分探索法 int array[ 8 ] = { 11, 13 , 27, 38, 42, 64, 72 , 81 } ; int bin_search( int a[] , int key , int L , int R ) { // Lは、範囲の左端 // Rは、範囲の右端+1 (注意!!) while( R > L ) { int m = (L + R) / 2 ; if ( a[m] == key ) return key ; else if ( a[m] > key ) R = m ; else L = m + 1 ; } return -1 ; // 見つからなかった } void main() { printf( "%d¥n" , bin_search( array , 0 , 8 ) ) ; }
一方、リスト構造ではデータ列の真ん中のデータを取り出すには、先頭からアクセスするしかないのでO(N)の処理時間がかかり、極めて効率が悪い。リスト構造のようにデータの追加が簡単な特徴をもったまま、もっとデータを高速に探すことはできないものか?
2分探索木
ここで、データを探すための効率の良い方法として、2分探索木(2分木)がある。以下の木のデータでは、分離する部分に1つのデータと、左の枝(下図赤)と右の枝(下図青)がある。
この枝の特徴は何だろうか?この枝では、中央のデータ例えば42の左の枝には、42未満の数字の枝葉が繋がっている。同じように、右の枝には、42より大きな数字の枝葉が繋がっている。この構造であれば、64を探したいなら、42より大きい→右の枝、72より小さい→左の枝、64が見つかった…と、いう風にデータを探すことができる。
特徴としては、1回の比較毎にデータ件数は、(N-1)/2件に減っていく。よって、この方法であれば、O(log N)での検索が可能となる。これを2分探索木とよぶ。
このデータ構造をプログラムで書いてみよう。
struct Tree { struct Tree* left ; int data ; struct Tree* right ; } ; // 2分木を作る補助関数 struct Tree* tcons( struct Tree* L , int d , struct Tree* R ) { struct Tree* n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { /* (A) */ n->left = L ; n->data = d ; n->right = R ; } return n ; } // 2分探索木よりデータを探す int tree_search( struct List* p , int key ) { while( p != NULL ) { if ( p->data == key ) return key ; else if ( p->data > key ) p = p->left ; else p = p->right ; } return -1 ; // 見つからなかった } struct Tree* top = NULL ; void main() { // 木構造をtcons()を使って直接生成 (B) top = tcons( tcons( tcons( NULL , 13 , NULL ) , 27 , tcons( NULL , 38 , NULL ) ) , 42 , tcons( tcons( NULL , 64 , NULL ) , 72 , tcons( NULL , 81 , NULL ) ) ) ; printf( "%d¥n" , tree_search( top , 64 ) ) ; }
この方式の注目すべき点は、struct Tree {…} で宣言しているデータ構造は、2つのポインタと1つのデータを持つという点では、双方向リストとまるっきり同じである。データ構造の特徴の使い方が違うだけである。
理解度確認
- 上記プログラム中の、補助関数tcons() の(A)の部分 “if ( n != NULL )…” の判定が必要な理由を答えよ。
- 同じくmain() の (B) の部分 “top = tcons(…)” において、末端部に NULL を入れる理由を答えよ。
2分木に対する処理
2分探索木に対する簡単な処理を記述してみよう。
// データを探す int search( struct Tree* p , int key ) { // 見つかったらその値、見つからないと-1 while( p != NULL ) { if ( p->data == key ) return key ; else if ( p->data > key ) p = p->left ; else p = p->right ; } return -1 ; } // データを全表示 void print( struct Tree* p ) { if ( p != NULL ) { print( p->left ) ; printf( "%d¥n" , p->data ) ; print( p->right ) ; } } // データ件数を求める int count( struct Tree* p ) { if ( p == NULL ) return 0 ; else return 1 + count( p->left ) + count( p->right ) ; } // データの合計を求める int sum( struct Tree* p ) { if ( p == NULL ) return 0 ; else return p->data + count( p->left ) + count( p->right ) ; } // データの最大値 int max( struct Tree* p ) { while( p->right != NULL ) p = p->right ; return p->data ; }
これらの関数では、木構造の全てに対する処理を実行する場合には、再帰呼び出しが必要となる。
双方向リスト
リストを使った集合演算のように、データを連ねたリストは、単純リストとか線形リストと呼ばれる。特徴はデータ数に応じてメモリを確保する点や、途中へのデータの挿入削除が得意な点があげられる。一方で、配列は想定最大データ件数で宣言してしまうと、実際のデータ数が少ない場合、メモリの無駄も発生する。しかし、想定件数と実データ件数がそれなりに一致していれば、無駄も必要最小限となる。リスト構造では、次のデータへのポインタを必要とすることから、常にポインタ分のメモリは、データにのみ注目すれば無駄となる。
シーケンシャルアクセス・ランダムアクセス
もう1つの欠点がシーケンシャルアクセスとなる。テープ上に記録された情報を読む場合、後ろのデータを読むには途中データを読み飛ばす必要があり、データ件数に比例したアクセス時間を要する。このような N番目 データ参照に、O(N)の時間を要するものは、シーケンシャルアクセスと呼ばれる。
一方、配列はどの場所であれ、一定時間でデータの参照が可能であり、これは ランダムアクセスと呼ばれる。N番目のアクセス時間がO(1)を要する。
このため、プログラム・エディタの文字データの管理などに単純リストを用いた場合、1つ前の行に移動するには、先頭から編集行までの移動で O(N) の時間がかかり、大量の行数の編集では、使いものにならない。ここで、シーケンシャルアクセスでも1つ前にもどるだけでも処理時間を改善してみよう。
単純リストから双方向リストへ
ここまで説明してきた単純リストは、次のデータへのポインタを持つ。ここで、1つ後ろのデータ(N番目からN+1番目)をアクセスするのは簡単だけど、1つ前のデータ(N-1番目)を参照しようと思ったら、先頭から(N-1)番目を辿るしかない。でも、これは O(N) の処理であり時間がかかる処理。
ではどうすればよいのか?
この場合、一つ前のデータの場所を覚えているポインタがあれば良い。
// 双方向リストの宣言 struct BD_List { struct BD_List* prev ; // 1つ前のデータへのポインタ int data ; struct BD_List* next ; // 次のデータへのポインタ } ;
このデータ構造は、双方向リスト(bi-directional list)と呼ばれる。では、簡単なプログラムを書いてみよう。双方向リストのデータを簡単に生成するための補助関数から書いてみる。
// リスト生成補助関数 struct BD_List* bd_cons( struct BD_List* p , int d , struct BD_List* n ) { struct BD_List* ans ; ans = (struct BD_List*)malloc( sizeof( struct BD_List ) ) ; if ( ans != NULL ) { ans->prev = p ; ans->data = d ; ans->next = n ; } return ans ; } void main() { struct BD_List* top ; struct BD_List* p ; // 順方向のポインタでリストを生成 top = bd_cons( NULL , 1 , bd_cons( NULL , 2 , bd_cons( NULL , 3 , NULL ) ) ) ; // 逆方向のポインタを埋める top->next->prev = top ; top->next->next->prev = top->gt;next ; // リストを辿る処理 for( p = top ; p->next != NULL ; p = p->next ) printf( "%d\n" , p->data ) ; for( ; p->prev != NULL ; p = p->prev ) printf( "%d\n" , p->data ) ; }
双方向リストの関数作成
以上の説明で、双方向の基礎的なプログラムの意味が分かった所で、練習問題。
先のプログラムでは、1,2,3 を要素とするリストを、ナマで記述していた。実際には、どんなデータがくるか分からないし、指定したポインタ p の後ろに、データを1件挿入する処理 bd_insert( p , 値 ) , また、p の後ろのデータを消す処理 bd_delete( p ) を書いてみよう。
// 双方向リストの指定場所 p の後ろに、値 d を要素とするデータを挿入せよ。 void bd_insert( struct BD_List* p , int d ) { struct BD_List*n = bd_cons( p , d , p->next ) ; if ( n != NULL ) { p->next->prev = n ; p->next = n ; } } // 双方向リストの指定場所 p の後ろのデータを消す処理は? void bd_delete( struct BD_List* p ) { struct BD_List* d = p->next ; d->next->prev = p ; p->next = d->next ; free( d ) ; } // この手のリスト処理のプログラムでは、命令の順序が重要となる。 // コツとしては、修正したい箇所の遠くの部分を操作する処理から // 書いていくと間違いが少ない。
番兵と双方向循環リスト
前述の bd_insert() だが、データの先頭にデータを挿入したい場合は、どう呼び出せば良いだろうか?
bd_insert() で、末尾にデータを挿入する処理は、正しく動くだろうか?
同じく、bd_delete() だが、データの先頭のデータを消したい場合は、どう呼び出せば良いだろうか?
また、データを消す場合、最後の1件のデータが消えて、データが0件になる場合、bd_delete() は正しく動くだろうか?
こういった問題が発生した場合、データが先頭・末尾で思ったように動かない時、0件になる場合に動かない時、特別処理でプログラムを書くことは、プログラムを読みづらくしてしまう。そこで、一般的には 循環リストの時にも紹介したが、番兵(Sentinel) を置くことが多い。
しかし、先頭用の番兵、末尾用の番兵を2つ用意するぐらいなら、循環リストにした方が便利となる。このような双方向リストでの循環した構造は、双方向循環リスト(bi-directional ring list)と呼ばれる。
この双方向循環リストを使うと、(1)先頭にデータを挿入(unshift)、(2)先頭のデータを取り出す(shift)、(3)末尾にデータを追加(push)、(4)末尾のデータを取り出す(pop)、といった処理が簡単に記述できる。この4つの処理を使うと、単純リスト構造で説明した、待ち行列(queue)やスタック(stack) が実現できる。この特徴を持つデータ構造は、先頭・末尾の両端を持つ待ち行列ということで、deque (double ended queue) とも呼ばれる。
理解確認
- 双方向リストとはどのようなデータ構造か図を示しながら説明せよ。
- 双方向リストの利点と欠点はなにか?
- 番兵を用いる利点を説明せよ。
- deque の機能と、それを実現するためのデータをリストを用いて実装するには、どうするか?
- 双方向リストが使われる処理の例としてどのようなものがあるか?
hogeはメタ構文変数
成績締め切りも近い中、レポートの出ない学生さんに確認したら、メールで送ったそうな。届いてないので確認してもらったら、前記事の福井高専のドメイン名の説明で、hoge@fukui-nct.ac.jp と書いてあったのを私の正式メールアドレスと勘違いしたらしい。
“hoge” は、正式にはメタ構文変数というけど、人に例として説明するときの適当につける名前(例えば太郎とか花子)。英語圏では、foo , bar , baz を使い、私もプログラム例では、foo() を使う。
んで hoge は、日本で使われるメタ構文変数で、hoge, fuga, piyo かな。
由来は、諸説色々あるけど個人的には、バラエティ番組の「ぴったしカンカン」で、司会者の久米宏が伏せ文字的に「◯◯は…」みたいなのを「hogehogeは…」みたいに話したのが元だと思ってる。
piyo は「めぞん一刻」の大家さんのエプロンだろうな。
集合とリスト処理
リスト構造は、必要に応じてメモリを確保するデータ構造であり、データ件数に依存しないプログラム が記述できる。その応用として、集合処理を考えてみる。
2進数を用いた集合計算
リストによる集合の前に、もっと簡単な集合処理を考える。データ件数の上限が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。
以下のプログラムは、0〜31の数字を2進数の各ビットに対応付けし、 ba = {1,2,3} , bb = {2,4,6} , bc= {4,6,9} を要素として持つ集合で、ba ∩ bb , bb ∩ bc , ba ∪ bc の計算を行う例である。
// 符号なし整数を uint_t とする。 typedef unsigned int uint_t ; // uint_tのbit数 #define UINT_BITS (sizeof( uint_t ) * 8) // 集合の内容を表示 void bit_print( uint_t x ) { for( int i = 0 ; i < UINT_BITS ; i++ ) if ( (x & (1 << i)) != 0 ) printf( "%d " , i ) ; printf( "\n" ) ; } void main() { // 98,7654,3210 // ba = {1,2,3} = 00,0000,1110 uint_t ba = (1<<1) | (1<<2) | (1<<3) ; // bb = {2,4,6} = 00,0101,0100 uint_t bb = (1<<2) | (1<<4) | (1<<6) ; // bc = {4,6,9} = 10,0101,0000 uint_t bc = (1<<4) | (1<<6) | (1<<9) ; bit_print( ba & bb ) ; // ba ∩ bb = {2} bit_print( bb & bc ) ; // bb ∩ bc = {4,6} bit_print( ba | bc ) ; // ba ∪ bc = {1,2,3,4,6,9} }
このような、2進数を用いた処理で有名なものとして、エラトステネスのふるいによる素数計算がある。このアルゴリズムでは、各bitを整数に対応付けし、素数で無いと判断した2進数の各桁に1の目印をつけていく方式である。
uint_t prime = 0 ; // 初期値=すべての数は素数とする。 void filter() { for( int i = 2 ; i < UINT_BITS ; i++ ) { if ( (prime & (1 << i)) == 0 ) { // iの倍数には、非素数の目印(1)をつける for( int j = 2*i ; j < UINT_BITS ; j += i ) prime |= (1 << j) ; } } for( int i = 2 ; i < UINT_BITS ; i++ ) { // 目印のついていない数は素数 if ( (prime & (1 << i)) == 0 ) printf( "%d\n" , i ) ; } }
リスト処理による積集合
前述の方法は、リストに含まれる/含まれないを、2進数の0/1で表現する方式である。しかし、2進数であれば、unsigned int で 32要素、unsigned long long int で 64 要素が上限となってしまう。 (32bitコンピュータ,gccの場合)
しかし、リスト構造であれば、リストの要素として扱うことで、要素件数は自由に扱える。また、今までの授業で説明してきた cons() などを使って表現すれば、簡単なプログラムでリストの処理が記述できる。
// 先週までに説明してきたリスト構造と補助関数 struct List { int data ; struct List* next ; } ; struct List* cons( int x , struct List* n ) { struct List* ans ; ans = (struct List*)malloc( sizeof( struct List ) ) ; if ( ans != NULL ) { ans->data = x ; ans->next = n ; } return ans ; } void print( struct List* p ) { for( ; p != NULL ; p = p->next ) { printf( "%d " , p->data ) ; } printf( "\n" ) ; } int find( struct List* p , int key ) { for( ; p != NULL ; p = p->next ) if ( p->data == key ) return 1 ; return 0 ; }
例えば、積集合(a ∩ b)を求めるのであれば、リストa の各要素が、リストb の中に含まれるか find 関数でチェックし、 両方に含まれたものだけを、ans に加えていく…という考えでプログラムを作ると以下のようになる。
// 集合積の計算 struct List* set_prod( struct List* a , struct List* b ) { struct List* ans = NULL ; for( ; a != NULL ; a = a->next ) { // aの要素がbにも含まれていたら、ansに加える if ( find( b , a->data ) ) ans = cons( a->data , ans ) ; } return ans ; } void main() { struct List* a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List* b = cons( 2, cons( 4, cons( 6, NULL ) ) ) ; struct List* c = cons( 4, cons( 6, cons( 9, NULL ) ) ) ; print( set_prod( a , b ) ) ; print( set_prod( b , c ) ) ; }
例題として、和集合、差集合などを考えてみよう。
リストの共有と削除の問題
リスト処理では、mallocを使うが、メモリリークをさせないためには、使用後のリストの廃棄は重要である。リストの全要素を捨てる処理であれば、以下のようになるであろう。
void list_free( struct List* p ) { while( p != NULL ) { struct List* d = p ; p = p->next ; free( d ) ; // 順序に注意 } }
一方、前説明の和集合(a ∪ b)のプログラムを以下のように作った場合、list_freeの処理は問題となる。
// 集合和 struct List* set_union( struct List*a, struct List*b ) { struct List* ans = b ; for( ; a != NULL ; a = a->next ) if ( !find( b , a->data ) ) ans = cons( a->data , ans ) ; return ans ; } void main() { struct List*a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List*b = cons( 2, cons( 3, cons( 4, NULL ) ) ) ; struct List*c = set_union( a , b ) ; // a,b,cを使った処理 // 処理が終わったので、a,b,cを捨てる list_free( a ) ; list_free( b ) ; list_free( c ) ; // c = { 1 , (bのリスト) } // (b)の部分は先のlist_free(b)で解放済み }
このような、リストb,リストcで共有されている部分があると、データの廃棄処理をどのように記述すべきなのか、問題となる。
これらの解決方法としては、(1) set_union() の最初で、ans=b となっている部分を別にコピーしておく、(2) 参照カウンタ法を用いる、(3) ガベージコレクタのある言語を用いる…などがある。(2),(3)は後期授業で改めて解説を行う。
// 同じ要素を含む、新しいリストを作る struct List* copy( struct List*p ) { struct List*ans = NULL ; for( ; p != NULL ; p = p->next ) ans = cons( p->data , ans ) ; return ans ; } struct List* set_union( struct List*a, struct List* b ) { struct List* ans = copy( b ) ; // この後は自分で考えよう。 }
理解確認
- 2進数を用いた集合処理は、どのように行うか?
- リスト構造を用いた集合処理は、どのように行うか?
- 積集合(A ∩ B)、和集合(A ∪ B)、差集合(A – B) の処理を記述せよ。
スタックと待ち行列
計算処理中に一時的なデータの保存として、stackとqueueがよく利用されるが、それを配列を使って記述したり、任意の大きさにできるリストを用いて記述する。
# 授業は、前回の演習時間が不十分だったので、前半講義、後半演習時間。
スタック
配列を用いたスタック
一時的な値の記憶によく利用されるスタックは、一般的にLIFO( Last In First out )と呼ばれる。配列を使って記述すると以下のようになるであろう。
#define STACK_SIZE 32 int stack[ STACK_SIZE ] ; int sp = 0 ; void push( int x ) { // データをスタックに積む stack[ sp++ ] = x ; } int pop() { // スタックのてっぺんを取り出す return stack[ --sp ] ; } void main() { push( 1 ) ; push( 2 ) ; push( 3 ) ; printf( "%d\n" , pop() ) ; // 3 printf( "%d\n" , pop() ) ; // 2 printf( "%d\n" , pop() ) ; // 1 }
++,–の前置型と後置型の違い
// 後置インクリメント演算子 int i = 100 ; printf( "%d" , i++ ) ; // これは、 printf( "%d" , i ) ; i++ ; // と同じ。100が表示される。 // 前置インクリメント演算子 int i = 100 ; printf( "%d" , ++i ) ; // これは、 i++ ; printf( "%d" , i ) ; // と同じ
リスト構造を用いたスタック
しかし、この中にSTACK_SIZE以上のデータは貯えられない。同じ処理をリストを使って記述すれば、ヒープメモリを使い切るまで使うことができるだろう。
struct List* stack = NULL ; void push( int x ) { // リスト先頭に挿入 stack = cons( x , stack ) ; } int pop() { // リスト先頭を取り出す int ans = stack->data ; struct List* d = stack ; stack = stack->next ; free( d ) ; return ans ; }
キュー(QUEUE)
2つの処理の間でデータを受け渡す際に、その間に入って一時的にデータを蓄えるためには、待ち行列(キュー)がよく利用される。 FIFO(First In First Out)
配列を用いたQUEUE / リングバッファ
配列にデータを入れる場所(wp)と取り出す場所のポインタ(rp)を使って蓄えれば良いが、配列サイズを超えることができないので、データを取り出したあとの場所を循環して用いるリングバッファは以下のようなコードで示される。
#define QUEUE_SIZE 32 int queue[ QUEUE_SIZE ] ; int wp = 0 ; // write pointer(書き込み用) int rp = 0 ; // read pointer(読み出し用) void put( int x ) { // 書き込んで後ろ(次)に移動 queue[ wp++ ] = x ; if ( wp >= QUEUE_SIZE ) // 末尾なら先頭に戻る wp = 0 ; } int get() { // 読み出して後ろ(次)に移動 int ans = queue[ rp++ ] ; if ( rp >= QUEUE_SIZE ) // 末尾なら先頭に戻る rp = 0 ; return ans ; } void main() { put( 1 ) ; put( 2 ) ; put( 3 ) ; printf( "%d\n" , get() ) ; // 1 printf( "%d\n" , get() ) ; // 2 printf( "%d\n" , get() ) ; // 3 }
このようなデータ構造も、get() の実行が滞るようであれば、wp が rp に循環して追いついてしまう。
リスト構造を用いたQUEUE
そこで、このプログラムもリストを使って記述すると以下のようになる。
struct List* queue = NULL ; struct List** tail = &queue ; void put( int x ) { // リスト末尾に追加 *tail = cons( x , NULL ) ; tail = &( (*tail)->next ) ; } int get() { // リスト先頭から取り出す int ans = queue->data ; struct List* d = queue ; queue = queue->next ; free( d ) ; return ans ; }
ただし、上記のプログラムは、データ格納後にget()で全データを取り出してしまうと、tail ポインタが正しい位置になっていないため、おかしな状態になってしまう。
また、このプログラムでは、rp,wp の2つのポインタで管理することになるが、 2重管理を防ぐために、リストの先頭と末尾を1つのセルで管理する循環リストが使われることが多い。
理解確認
- 配列を用いたスタック・待ち行列は、どのような処理か?図などを用いて説明せよ。
- リスト構造を用いたスタック・待ち行列について、図などを用いて説明せよ。
- スタックや待ち行列を、配列でなくリスト構造を用いることで、どういう利点があるか?欠点があるか説明せよ。
リストへの追加処理
前期期末試験までの授業予定( 7/10 リスト追加+課題, 7/17 stackとque+課題 7/24 リストで集合計算 )
最初のリスト生成の説明では、補助関数 cons を用いて、直接リストを生成していた。
しかし、実際にはデータを入力しながらの処理となるであろう。
最も単純なリスト挿入
struct List* top = NULL ; int main() { int x ; while( scanf( "%d" , &x ) == 1 ) { top = cons( x , top ) ; } print( top ) ; // 前回示したリスト全要素表示 return 0 ; }
ここで示したコードは、新しい要素を先頭に挿入していく処理となる。このため、作られたリストは、与えられた要素順とは逆順となる。この方法は、リストを管理するポインタが1つで分かりやすい。
要素を末尾に追加
前に示した方法は、逆順になるので、与えられた要素が末尾に追加する方法を示す。
struct List* top = NULL ; struct List** tail = &top ; int main() { int x ; while( scanf( "%d" , &x ) == 1 ) { *tail = cons( x , NULL ) ; tail = &((*tail)->next) ; } print( top ) ; // 前回示したリスト全要素表示 return 0 ; }
この方法は、次回にデータを追加する場所(末尾だからNULLが入っている)を覚える方式である。ただし、リストへのポインタのポインタを使う方法なので、少しプログラムがわかりづらいかもしれない。
理解の確認のために、末尾のポインタを動かす部分の式を、型で解説すると以下のようになる。
途中でデータ挿入・データ削除
リスト構造の特徴は、途中にデータを入れたり、途中のデータを抜くのが簡単にできる所。そのプログラムは以下のようになるだろう。
void insert( struct List*p , int data ) { // あえて、補助関数consを使わずに書いてみる struct List* n ; n = (struct List*)malloc( sizeof( struct List ) ) ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(A) if ( n != NULL ) { n->data = data ; ~~~~(B) n->next = p->next ; ~~~~~~~(C) p->next = n ; } // consを使って書けば、簡単 // p->next = cons( data , p->next ) ; }
void remove_after( struct List* p ) { struct List* del = p->next ; p->next = del->next ; free( del ) ; }
理解度確認
上記プログラムinsert() の中の、下線部(A),(B),(C)の型は何か答えよ。
レポート課題
以下に示すようなデータを扱うリスト構造を作り、そのリストを扱うプログラムを作成せよ。
( 出席番号 % 3 ) + 1 の番号の課題に取り組むこと。
- 緯度(latitude)経度(longitude)とその場所の都市名(city)
- 名前(name)と誕生日(month,day)(1つの変数に2月7日を0207のように保存するのは禁止)
- 複素数(re,im)
このようなプログラムを作るのであれば、以下の例を参考に。
struct NameAgeList { char name[ 20 ] ; // 名前 int age ; // 年齢 struct NameAgeList* next ; // 次のデータへのポインタ } ; struct NameAgeList* na_cons( char* nm, int ag, struct NameAgeList*p ) { struct NameAgeList* ans ; ans = (struct NameAgeList*)malloc( sizeof( struct NameAgeList ) ) ; if ( ans != NULL ) { strcpy( ans->name , nm ) ; ans->age = ag ; ans->next = p ; } return ans ; }
リスト処理
リスト構造
リスト構造は、データと次のデータへのポインタで構成され、必要に応じてメモリを確保することで、配列の上限が制限にならないようにする。また、次のデータへのポインタでつなげているため、途中へのデータ挿入が簡単にできるようにする。
struct List { int data ; struct List* next ; } ; struct List* top ; top = (struct List*)malloc( sizeof( struct List ) ) ; top->data = 111 ; top->next = (struct List*)malloc( sizeof( struct List ) ) ; top->next->data = 222 ; top->next->next = (struct List*)malloc( sizeof( struct List ) ) ; top->next->next->data = 333 ; top->next->next->next = NULL ; // 末尾データの目印 struct List*p ; for( p = top ; p != NULL ; p = p->next ) { printf( "%d¥n" , p->data ) ; }
補助関数
上記のプログラムでは、(struct…)malloc(sizeof(…))を何度も記載し、プログラムが分かりにくいので、以下に示す補助関数を使うと、シンプルに記載できる。
struct List* cons( int x , struct List* n ) { struct List* ans ; ans = (struct List*)malloc( sizeof( struct List ) ) ; if ( ans != NULL ) { ans->data = x ; ans->next = n ; } return ans ; } struct List* top ; top = cons( 111 , cons( 222 , cons( 333 , NULL ) ) ) ;
補助関数の名前の cons は、constructor の略であり、古くから使われている List Processor(LISP) というプログラム言語でのリスト(セル)を生成する関数が cons 。
LISPと関数型プログラミング言語
LISPの歴史は長く、最古のFORTRAN,COBOLに次ぐ3番目ぐらい。最初は、人工知能のプログラム開発のための関数型プログラミング言語として作られた。特徴として、データもプログラムもすべてリスト構造(S式)で表すことができ、プログラムは関数型に基づいて作られる。
関数型プログラミングは、Ruby や Python でも取り入れられている。関数型プログラミングは、処理を関数をベースに記述することで「副作用を最小限にすることができ」、極端な話をすればループも再帰呼出しで書けばいい…。
LISPの処理系は、最近では Scheme などが普通だが、プログラムエディタの Emacs は、内部処理が LISP で記述されている。
簡単なリスト処理の例
先に示したリスト構造について簡単なプログラム作成を通して、プログラミングに慣れてみよう。
// 全要素を表示する関数 void print( struct List* p ) { for( ; p != NULL ; p = p->next ) printf( "%d " , p->data ) ; printf( "¥n" ) ; } // データ数を返す関数 int count( struct List* p ) { int c = 0 ; for( ; p != NULL ; p = p->next ) c++ ; return c ; } void main() { struct List* top = cons( 111 , cons( 444 , cons( 333 , NULL ) ) ) ; print( top ) ; printf( "%d¥n" , count( top ) ) ; }
リスト処理を自分で考えて作成
以下のようなプログラムを作ってみよう。意味がわかって慣れてくれば、配列の部分の for の回し方が変わっただけということに慣れてくるだろう。
// 全要素の合計 int sum( struct List* p ) { // sum( top ) → 888 自分で考えよう } // リストの最大値を返す int max( struct List* p ) { // max( top ) → 444 (データ件数0の場合0を返す) 自分で考えよう } // リストの中から指定した値の場所を返す int find( struct List* p , int key ) { // find( top , 444 ) = 1 (先頭0番目) // 見つからなかったら -1 自分で考えよう }
再帰呼び出しでリスト処理
リスト処理の応用のプログラムを作るなかで、2分木などのプログラミングでは、リスト処理で再帰呼出しを使うことも多いので、先に示したプログラムを再帰呼び出しで書いたらどうなるであろうか?
// 全データを表示 void print( struct List* p ) { if ( p == NULL ) { printf( "¥n" ) ; } else { printf( "%d " , p->data ) ; print( p->next ) ; // 末尾再帰 } } // データ数を返す関数 int count( struct List* p ) { if ( p == NULL ) return 0 ; else return 1 + count( p->next ) ; // 末尾再帰 } // 全要素の合計 int sum( struct List* p ) { // sum( top ) → 888 自分で考えよう } // リストの最大値を返す int max( struct List* p ) { // max( top ) → 444 (データ件数0の場合0を返す) 自分で考えよう } // リストの中から指定した値を探す。 int find( struct List* p , int key ) { // find( top , 444 ) = 1 // 見つかったら1 , 見つからなかったら 0 自分で考えよう }
理解度確認
上記プログラム中の sum() , max() , find() を再帰呼び出しをつかって記述せよ。