ホーム » 2024 » 7月 (ページ 2)

月別アーカイブ: 7月 2024

2024年7月
 123456
78910111213
14151617181920
21222324252627
28293031  

検索・リンク

UMLと振る舞い図

前回の講義で説明した構造図に続いて、処理の流れを説明するための振る舞い図の説明。

講義の後半は、UML作成のレポートの課題時間とする。

振る舞い図

参考資料をもとに振る舞い図の説明を行う。

ユースケース図

ユーザなど外部からの要求に対する、システムの振る舞いを表現するための活用事例や機能を表す図がユースケース図。 システムを構築する際に、最初に記述するUMLであり、システムに対する処理要件の全体像や機能を理解するために記述する。 ユーザや外部のシステムは、アクターとよび人形の絵で示す。楕円でシステムに対する具体的な処理をユースケースとして楕円で記述する。 関連する複数のユースケースをまとめて、サブジェクトとして示す場合もある。

上記の例は、学生が受講登録をして、授業に参加し、テストを受けるという様を表現したユースケース図である。また、下記の例にて、私自身が児童の保護システムを構築した際のユースケース図を示す。このように、システムの機能がどういったものがあるのかを網羅的に説明する際にユースケース図がよく使われる。

アクティビティ図

処理順序を記述するための図にはフローチャートがあるが、上から下に処理順序を記述するため、縦長の図になりやすい。また、四角枠の中に複雑なことを書けないので、UMLではアクティビティ図を用いる。

上記のアクティビティ図は、朝起きて出勤するまでの処理の流れを記述したものである。フローチャートと違い上から下に延びる図に限らず左右に広げて記載してある。

初期状態●から、終了状態◉までの手順を示すためのものがアクティビティ図。 フローチャートに無い表現として、複数の処理を並行処理する場合には、フォークノードで複数の処理を併記し、最終的に1つの処理になる部分をジョインノードで示す。 通常の処理は、角丸の長方形で示し、条件分岐(デシジョンノード)や合流(マージノード)はひし形で示す。

ステートチャート図(状態遷移図)

ステートチャート図は、処理内部での状態遷移を示すための図。 1つの状態を長丸長方形で示し、初期状態●から終了状態◉までを結ぶ。 1つの状態から、なんらかの状態で他の状態に遷移する場合は、分岐条件となる契機(タイミング)とその条件、およびその効果(出力)を「契機[条件]/効果」で矢印に併記する。 複数の状態をグループ化して表す場合もある。

上記のステートチャート図は、普通高校と高専の入学から卒業就職までを記載したものである。

シーケンス図

複数のオブジェクトが相互にやり取りをしながら処理が進むようなもののタイミングを記述するためのものがシーケンス図という。 上部の長方形にクラス/オブジェクトを示し、その下に縦軸にて時系列の処理の流れの線(Life Line)を描く。 オブジェクトがアクティブな状態は、縦長の長方形で示し、そのLife Line間を、やり取り(メッセージ)の線で相互に結ぶ。 メッセージは、相手側からの返答を待つような同期メッセージは、黒塗り三角矢印で示す。 返答を待たない非同期メッセージは矢印で示し、返答は破線で示す。

上のシーケンス図は、顧客が店員と対応しながらPOS端末でお金の出し入れをする様を表現したものとなっている。

コミュニケーション図

クラスやオブジェクトの間の処理とその応答(相互作用)と関連の両方を表現する図。

応答を待つ同期メッセージは -▶︎、非同期メッセージは→で表す。複数のオブジェクト間のやりとりの相互作用を表現する。

タイミング図

タイミング図は、クラスやオブジェクトの時間と共に状態がどのように遷移するのかを表現する図。

状態変化の発生するタイミングや、時間的な遅れや時間的な制約を図で明記するために使われる。

IT専科・UML入門より引用


UMLで人に説明する図の書き方として紹介してきたけど、よく現場で使われる図としては、ポンチ絵も名前だけは紹介したい。

ポンチ絵

ポンチ絵は、元々は風刺画のような漫画のことをであったが、最近ではビジネススの世界では「構想図」の意味で使われる。 製図の下書きとして作成するものや、イラストや図を使って概要をまとめた企画書などのことを言う。UMLのような書式のルールがある訳ではなく、相手に如何に印象付けるかが基本であり、ポンチ絵1つで企画の是非がきまったりもする。

# プレゼンで文字密度の高いポンチ絵で説明されると、時として細かい所が読めずにイライラすることもある。

製図の下書きとしてのポンチ絵

イラストや図で概要をまとめた企画書としてのポンチ絵

シェルスクリプトの演習

今回は、前回までのシェルの機能を使って演習を行う。

プログラムの編集について

演習用のサーバに接続して、シェルスクリプトなどのプログラムを作成する際のプログラムの編集方法にはいくつかの方式がある。

  • サーバに接続しているターミナルで編集
    • nano , vim , emacs などのエディタで編集
  • パソコンで編集してアップロード
    • scp 命令で編集したファイルをアップロード
  • パソコンのエディタのリモートファイルの編集プラグインで編集
    • VSCode の remote-ssh プラグインを使うのが簡単だけど、サーバ側の負担が大きいので今回は NG

リモート接続してエディタで編集

今回の説明では、emacs で編集する方法を説明する。

((( Emacs を起動 )))
guest00@nitfcei.mydns.jp:~$ emacs helloworld.sh

エディタが起動すると、以下のような画面となる。

scpでファイルをアップロード

scpコマンドは、ssh のプロトコルを使ってネットワークの先のコンピュータとファイルのコピーを行う。前述の emacs などのエディタが使いにくいのなら scp を使えばいい。

((( scp 命令の使い方 )))
$ scp ユーザ名@ホスト名:ファイルの場所 

((( サーバの helloworld.sh をダウンロード )))
C:\Users\t-saitoh> scp -P 443 guest00@nitfcei.mydns.jp:helloworld.sh .
C:\Users\t-saitoh> scp -P 443 guest00@nitfcei.mydns.jp:/home0/Challenge/3-shellscript/helloworld.sh .
((( パソコンの hoge.sh をアップロード )))
C:\Users\t-saitoh> scp -P 443 hoge.sh guest00@nitfcei.mydns.jp:
((( パソコンの hoge.html を public_html にアップロード ))) 
C:\Users\t-saitoh> scp -P 443 hoge.html guest00@nitfcei.mydns.jp:public_html

シェルスクリプトの命令

条件式の書き方

シェルには、test コマンド( [ コマンド ) で条件判定を行う。動作の例として、テストコマンドの結果を コマンドの成功/失敗 を表す $? を使って例示する。

guest00@nitfcei:~$ [ -f helloworld.sh ] ; echo $?    # [ -f ファイル名 ]
0                                                    # ファイルがあれば0/なければ1
guest00@nitfcei:~$ [ -x /bin/bash ]; echo $?         # [ -x ファイル名 ]
0                                                    # ファイルが存在して実行可能なら0/だめなら1
guest00@nitfcei:~$ [ -d /opt/local/bin ] ; echo $?   # [ -d ディレクトリ名 ]
1                                                    # ディレクトリがあれば0/なければ1
guest00@nitfcei:~$ [ "$PATH" = "/bin:/usr/bin" ] ; echo $?   # [ "$変数" = "文字列" ]
1                                                    # $変数が"文字列"と同じなら0/違えば1

シェルの制御構文

((( シェルの if 文 )))
if [ -f helloworld.sh ]; then
   echo "exist - helloworld.sh"
elif [ -f average.c ]; then
   echo "exist - average.c"
else
   echo "みつからない"
fi
((( シェルの for 文 )))
for user in /home0/guests/*   # ワイルドカード文字 * があるので、/home0/guests/ のファイル一覧
do                            # が取り出されて、その1つづつが、$user に代入されながら繰り返し。
    echo $user
done
---
結果: /home0/guests/guest00, /home0/guests/guest01 ... 
((( while 文 )))
/bin/grep ^guest < /etc/passwd \    # passwd ファイルでguestで始まる行を抜き出し、
| while read user                   # read コマンドで その 行データを $user に代入しながらループ
  do
      echo $user
  done

シェル演習向けのコマンド一例

`コマンド`と$(コマンド)

((( コマンドの結果を使う )))
guest00@nitfcei:~$ ans=`whoami`     # whoami コマンドの結果を ans に代入
guest00@nitfcei:~$ echo $ans        # バッククオートに注意 ' シングルクオート " ダブルクオート ` バッククオート
guest00
guest00@nitfcei:~$ ans=$(pwd)       # pwd コマンドの結果を ans に代入
guest00@nitfcei:~$ echo $ans        # 最近は、$(コマンド) の方が良く使われている
/home0/guest00

コマンドライン引数

シェルの中でコマンドライン引数を参照する場合には、”$数字“, “$@” を使う。$1 , $2 で最初のコマンドライン引数, 2番目のコマンドライン引数を参照できる。すべてのコマンドライン引数を参照する場合には、$@ を使う。

((( argv.sh : コマンドライン引数を表示 )))
#!/bin/bash
echo "$@"
for argv in "$@"
do
    echo "$argv"
done
((( argv.sh を実行 )))
guest00@nitfcei:~$ chmod 755 argv.sh
guest00@nitfcei:~$ ./argv.sh abc 111 def
abc 111 def          # echo "$@" の結果
abc                  # for argv ... の結果
111
def

cutコマンドとawkコマンド

((( 行の特定部分を抜き出す )))
guest00@nitfcei:~$ cut -d: -f 1 /etc/passwd   # -d:  フィールドの区切り文字を : で切り抜き
root                                          # -f 1 第1フィールドだけを出力
daemon
adm
:
guest00@nitfcei:~$ awk -F: '{print $1}' /etc/passwd  # -F: フィールド区切り文字を : で切り分け
root                                                 # ''
daemon
adm
:

lastコマンド

((( ログイン履歴を確認 )))
guest00@nitfcei:~$ last
t-saitoh pts/1        64.33.3.150      Thu Jul  7 12:32   still logged in
最近のログインした名前とIPアドレスの一覧
:
((( guest* がログインした履歴 )))
guest00@nitfcei:~$ last | grep guest
guest15  pts/11       192.156.145.1    Tue Jul  5 16:00 - 16:21  (00:21)
:
((( 7/5にログインしたguestで、名前だけを取り出し、並び替えて、重複削除 )))
guest00@nitfcei:~$ last | grep guest | grep "Jul  5" | awk '{print $1}' | sort | uniq
7/5("Jul  5")の授業で演習に参加していた学生さんの一覧が取り出せる。
### あれ、かなりの抜けがあるな!?!? ###

whoisコマンド

((( IPアドレスなどの情報を調べる )))
guest00@nitfcei:~$ whois 192.156.145.1
:
inetnum:        192.156.145.0 - 192.156.148.255
netname:        FUKUI-NCT
country:        JP
:
guest00@nitfcei:~$ whois 192.156.145.1 | grep netname:
netname:   FUKUI-NCT
netname:   ANCT-CIDR-BLK-JP

シェルスクリプトのセキュリティ

ここまでのプログラムの動作例では、a.out などのプログラムを実行する際には、先頭に “./” をつけて起動(./a.out)している。これは「このフォルダ(“./“)にある a.out を実行せよ」との意味となる。

いちいち、カレントフォルダ(“./”)を先頭に付けるのが面倒であっても、環境変数 PATH を “export PATH=.:/bin:/usr/bin” などと設定してはいけない。こういった PATH にすれば、”a.out” と打つだけでプログラムを実行できる。しかし、”ls” といったファイル名のプログラムを保存しておき、そのフォルダの内容を確認しようとした他の人が “ls” と打つと、そのフォルダの中身を実行してしまう。

guest00@nitfcei:~$ export PATH=".:/bin:/bin/bash"
guest00@nitfcei:~$ cat /home0/Challenge/1-CTF.d/Task5/Bomb/ls
#!/bin/bash

killall -KILL bash
guest00@nitfcei:~$ cd /home0/Challenge/1-CTF.d/Task5/Bomb
guest00@nitfcei:~$ ls
# 接続が切れる(bashが強制停止となったため)

こういったシェルスクリプトでのセキュリティのトラブルを防ぐために、

  • 環境変数PATHに、カレントフォルダ”./”を入れない
  • シェルスクリプトで外部コマンドを記述する際には、コマンドのPATHをすべて記載する。
    コマンドのPATHは、which コマンドで確認できる。echo とか [ といったコマンドは、bash の組み込み機能なので、コマンドのPATHは書かなくていい。

演習問題

シェルスクリプトの練習として、以下の条件を満たすものを作成し、スクリプトの内容の説明, 機能, 実行結果, 考察を記載したワードファイル(or PDF)等で、こちらのフォルダに提出してください。

  • スクリプトとして起動して結果が表示されること。(シバン,実行権限)
  • コマンドライン引数を使っていること。
  • 入出力リダイレクトやパイプなどを使っていること。
  • 以下の例を参考に。
((( 第1コマンドライン引数指定したユーザが、福井高専からアクセスした履歴を出力する。)))
#!/bin/bash

if [ -x /usr/bin/last -a -x /bin/grep ]; then   # [ ... -a ... ] は、複数条件のAND
    /usr/bin/last "$1" | /bin/grep 192.156.14
fi
-------------------------------------------------------------------------
((( guest グループで、$HOME/helloworld.sh のファイルの有無をチェック )))
#!/bin/bash

for dir in /home0/guests/*
do
   if [ -f "$dir/helloworld.sh" ]; then      # PATHの最後の部分を取り出す
      echo "$(/usr/bin/basename $dir)"       # $ basename /home0/guests/guest00
   fi                                        # guest00                  ~~~~~~~basename
done

スタックと待ち行列

前回の授業では、リストの先頭にデータを挿入する処理と、末尾に追加する処理について説明したが、この応用について説明する。

計算処理中に一時的なデータの保存として、スタック(stack)待ち行列・キュー(queue)がよく利用される。それを配列を使って記述したり、任意の大きさにできるリストを用いて記述することを示す。

スタック

配列を用いたスタック

一時的な値の記憶によく利用されるスタック(stack)は、データの覚え方の特徴からLIFO( Last In First out )とも呼ばれる。配列を使って記述すると以下のようになるであろう。

import java.util.*;

public class Main {
    static final int STACK_SIZE = 10 ;
    static int[] stack = new int[ STACK_SIZE ] ;
    static int   sp    = 0 ;
    static void push( int x ) {
        stack[ sp++ ] = x ;
    }
    static int pop() {
        return stack[ --sp ] ;
    }
    public static void main(String[] args) throws Exception {
        push( 11 ) ;
        push( 22 ) ;
        push( 33 ) ;
        System.out.println( pop() ) ;
        System.out.println( pop() ) ;
        System.out.println( pop() ) ;
    }
}

配列を使った Stack をオブジェクト指向で記述するなら、以下のように書ける。

import java.util.*;

class Stack {
    static final int STACK_SIZE = 10 ;
    int[] array ;
    int   sp ;
    Stack() {
        this.array = new int[ STACK_SIZE ] ;
        this.sp    = 0 ;
    }
    void push( int x ) {
        array[ sp++ ] = x ;
    }
    int pop() {
        return array[ --sp ] ;
    }
} ;

public class Main {
    public static void main(String[] args) throws Exception {
        Stack stack = new Stack() ;
        stack.push( 11 ) ;
        stack.push( 22 ) ;
        stack.push( 33 ) ;
        System.out.println( stack.pop() ) ;
        System.out.println( stack.pop() ) ;
        System.out.println( stack.pop() ) ;
    }
}

C言語で書いた場合

#define STACK_SIZE 32
int stack[ STACK_SIZE ] ;
int sp = 0 ;

void push( int x ) { // データをスタックの一番上に積む
    stack[ sp++ ] = x ;
}
int pop() { // スタックの一番うえのデータを取り出す
    return stack[ --sp ] ;
}
void main() {
    push( 1 ) ; push( 2 ) ; push( 3 ) ;
    printf( "%d\n" , pop() ) ; // 3
    printf( "%d\n" , pop() ) ; // 2
    printf( "%d\n" , pop() ) ; // 1
}

++,–の前置型と後置型の違い

// 後置インクリメント演算子
int i = 100 ;
printf( "%d" , i++ ) ;
// これは、
printf( "%d" , i ) ;
i++ ;
// と同じ。100が表示された後、101になる。

// 前置インクリメント演算子
int i = 100 ;
printf( "%d" , ++i ) ;
//   これは、
i++ ;
printf( "%d" , i ) ;
// と同じ。101になった後、101を表示。

リスト構造を用いたスタック

しかし、この中にSTACK_SIZE以上のデータは貯えられない。同じ処理をリストを使って記述すれば、配列サイズの上限を気にすることなく使うことができるだろう。では、リスト構造を使ってスタックの処理を記述してみる。

import java.util.*;

class ListNode {
    int      data ;
    ListNode next ;
    ListNode( int d , ListNode n ) {
        this.data = d ;
        this.next = n ;
    }
}

public class Main {
    static ListNode stack = null ;
    static void push( int x ) {
        stack = new ListNode( x , stack ) ;
    }
    static int pop() {
        int ans = stack.data ;
        stack = stack.next ;
        return ans ;
    }
    public static void main(String[] args) throws Exception {
        push( 1 ) ;
        push( 2 ) ;
        push( 3 ) ;
        System.out.println( pop() ) ;
        System.out.println( pop() ) ;
        System.out.println( pop() ) ;
    }
}
struct List* stack = NULL ;

void push( int x ) { // リスト先頭に挿入
    stack = cons( x , stack ) ;
}
int pop() { // リスト先頭を取り出す
    int ans = stack->data ;
    struct List* d = stack ;
    stack = stack->next ;      // データ 0 件で pop() した場合のエラー対策は省略
    free( d ) ;
    return ans ;
}

オブジェクト指向っぽく書くならば、下記のようになるだろう。初期状態で stack = null にしておくと、stack.push() ができないので、stack の先頭には、ダミーデータを入れるようにプログラムを書くと以下のようになるだろう。

import java.util.*;

class ListNode {
    int      data ;
    ListNode next ;
    ListNode( int d , ListNode n ) {
        this.data = d ;
        this.next = n ;
    }
    ListNode() {   // stack初期化用のコンストラクタ
        this.data = -1 ;
        this.next = null ;
    }
    void push( int x ) {
        this.next = new ListNode( x , this.next ) ;
    }
    int pop() {
        int ans = this.next.data ;
        this.next = this.next.next ;
        return ans ;
    }
} ;

public class Main {
    public static void main(String[] args) throws Exception {
        ListNode stack = new ListNode() ; // stack初期化用のコンストラクタを使う
        stack.push( 1 ) ;
        stack.push( 2 ) ;
        System.out.println( stack.pop() ) ;
        System.out.println( stack.pop() ) ;
    }
}

キュー(QUEUE)

2つの処理の間でデータを受け渡す際に、その間に入って一時的にデータを蓄えるためには、待ち行列(キュー:queue)がよく利用される。 データの覚え方の特徴からFIFO(First In First Out)とも呼ばれる。

配列を用いたQUEUE / リングバッファ

配列にデータを入れる場所(wp)と取り出す場所のポインタ(rp)を使って蓄えれば良いが、配列サイズを超えることができないので、データを取り出したあとの場所を循環して用いるリングバッファは以下のようなコードで示される。

import java.util.*;

public class Main {
    static final int QUEUE_SIZE = 32 ;
    static int[] queue = new int[ QUEUE_SIZE ] ;
    static int wp = 0 ;
    static int rp = 0 ;
    static void put( int x ) {
        queue[ wp++ ] = x ;
        if ( wp >= QUEUE_SIZE ) // wp = wp % QUEUE_SIZE ; or wp = wp & (QUEUE_SIZE - 1) ;
            wp = 0 ;
    }
    static int get() {
        int ans = queue[ rp++ ] ;
        if ( rp >= QUEUE_SIZE ) // rp = rp % QUEUE_SIZE ; or rp = rp & (QUEUE_SIZE - 1) ;
            rp = 0 ;
        return ans ;
    }
    public static void main(String[] args) throws Exception {
        // Your code here!
        put( 1 ) ;
        put( 2 ) ;
        put( 3 ) ;
        System.out.println( get() ) ;
        System.out.println( get() ) ;
        System.out.println( get() ) ;
    }
}
#define QUEUE_SIZE 32
int queue[ QUEUE_SIZE ] ;
int wp = 0 ; // write pointer(書き込み用)
int rp = 0 ; // read  pointer(読み出し用)

void put( int x ) { // 書き込んで後ろ(次)に移動
    queue[ wp++ ] = x ;
    if ( wp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        wp = 0 ;
}
int get() { // 読み出して後ろ(次)に移動
    int ans = queue[ rp++ ] ;
    if ( rp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        rp = 0 ;
    return ans ;
}
void main() {
    put( 1 ) ; put( 2 ) ; put( 3 ) ;
    printf( "%d\n" , get() ) ; // 1
    printf( "%d\n" , get() ) ; // 2
    printf( "%d\n" , get() ) ; // 3
}

このようなデータ構造も、get() の実行が滞るようであれば、wp が rp に循環して追いついてしまう。このため、上記コードはまだエラー対策としては不十分である。どのようにすべきか?

 

リスト構造を用いたQUEUE

前述のリングバッファもget()しないまま、配列上限を越えてput()を続けることはできない。

この配列サイズの上限問題を解決したいのであれば、リスト構造を使って解決することもできる。この場合のプログラムは、以下のようになるだろう。

import java.util.*;

class ListNode {
   int      data ;
   ListNode next ;
   ListNode( int d , ListNode n ) {
       this.data = d ;
       this.next = n ;
   }
} ;

public class Main {
    static ListNode top = new ListNode( -1 , null ) ;
    static ListNode tail = top ;
    static void put( int x ) {
        tail.next = new ListNode( x , null ) ;
        tail = tail.next ;
    }
    static int get() {
        int ans = top.next.data ;
        top.next = top.next.next ;
        return ans ;
    }
    public static void main(String[] args) throws Exception {
        put( 1 ) ;
        put( 2 ) ;
        put( 3 ) ;
        System.out.println( get() ) ;
        System.out.println( get() ) ;
        System.out.println( get() ) ;
    }
}

Javaで書かれた ListNode を用いた待ち行列のイメージ図は下記のように示される。

struct List* queue = NULL ;
struct List** tail = &queue ;

void put( int x ) { // リスト末尾に追加
    *tail = cons( x , NULL ) ;
    tail = &( (*tail)->next ) ;
}
int get() { // リスト先頭から取り出す
    int ans = queue->data ;
    struct List* d = queue ;
    queue = queue->next ;
    free( d ) ;
    return ans ;
}

ただし、上記のプログラムは、データ格納後にget()で全データを取り出してしまうと、tail ポインタが正しい位置になっていないため、おかしな状態になってしまう。
また、このプログラムでは、rp,wp の2つのポインタで管理することになるが、 2重管理を防ぐために、リストの先頭と末尾を1つのセルで管理する循環リストが使われることが多い。

理解確認

  • 配列を用いたスタック・待ち行列は、どのような処理か?図などを用いて説明せよ。
  • リスト構造を用いたスタック・待ち行列について、図などを用いて説明せよ。
  • スタックや待ち行列を、配列でなくリスト構造を用いることで、どういう利点があるか?欠点があるか説明せよ。
  • 配列を用いたリングバッファが用いられている身近な例にはどのようなものがあるか?
  • 配列を用いたリングバッファを実装する場合配列サイズには 2n 個を用いることが多いのはなぜだろうか?

UMLと構造図

UMLの構造図の書き方の説明。 詳しくは、参考ページのUML入門などが、分かりやすい。

クラス図

クラス図は、構造図の中の基本的な図で、 枠の中に、上段:クラス名、中段:属性(要素)、下段:メソッド(関数)を記載する。 属性やメソッドの可視性を示す場合は、”-“:private、”+”:public、”#”:protected 可視性に応じて、”+-#”などを記載する。

関連

クラスが他のクラスと関係がある場合には、その関係の意味に応じて、直線や矢印で結ぶ。
(a)関連(association):単純に関係がある場合、
(b)集約(aggregation):部品として持つが、弱い結びつき。関係先が消滅しても別に存在可能。(has-a)
(c)コンポジション(composition):部品として持つが強い結びつき。関係先と一緒に消滅。(has-a)
(d)依存(dependency):依存関係にあるだけ
(e)派生(generalization):派生・継承した関係(is-a)
(f)実現(realization): Javaでのinterfaceによる多重継承

上図の例では、乗り物クラスVehicleから自動車Carが派生し(CarからVehicleへの三角矢印―▷)、 自動車は、エンジン(Engine)を部品として持つ(EngineからCarへのひし形矢印―◆)。エンジンは車体と一緒に廃棄なら、コンポジション(C++であれば部品の実体を持つ)で実装する。

自動車は、同じく車輪(Wheel)を4つ持つが、自動車を廃棄してもタイヤは別に使うかもしれないので、集約(部品への参照を持つ)で実装する(WheelからCarへのひし形矢印―◇)。 集約で実装する場合は、C++などであれば、ポインタで部品を持ち、部品の廃棄(delete)は、別に行うことになる。

Javaなどのプログラム言語では、オブジェクトはデータの実体へのポインタで扱われるため、コンポジションと集約を区別して表現することは少ない。

is-a 、has-a の関係

前の課題でのカモノハシクラスで、羽や足の情報をどう扱うべきかで、悩んだ場合と同じように、 クラスの設計を行う場合には、部品として持つのか、継承として機能を持つのか悩む場合がある。 この場合には、“is-a”の関係“has-a”の関係で考えると、部品なのか継承なのか判断しやすい。

たとえば、上の乗り物(Vehicle)クラスと、車(Car)のクラスは、”Car is-a Vehicle” といえるので、is-a の関係。 “Car is-a Engine”と表現すると、おかしいことが判る。 車(Car)とエンジン(Engine)のクラスは、”Car has-a Engine”といえるので、has-a の関係となる。 このことから、CarはVehicleからの派生であり、Carの属性としてEngineを部品として持つ設計となる。

ER図

UMLではないが、オブジェクト図に近いものとしてER図がある。これはリレーショナルデータベースの設計が正しいか確認しながら設計するための図で、Entity(実体)とRelation(関連)を相互に線で結んだもので、最近のER図の書き方は、かなりクラス図の書き方に似ている。

オブジェクト図

クラス図だけで表現すると、複雑なクラス関係では、イメージが分かりづらい場合がでてくる。 この場合、具体的な値を図に書き込んだオブジェクトで表現すると、説明がしやすい場合がある。 このように具体的な値で記述するクラス図は、オブジェクト図と言う。 書き方としては、クラス名の下に下線を引き中段の属性の所には具体的な値を書き込んで示す。

その他の構造図

パッケージ図

パッケージ図は、クラス図をパッケージ毎に分類して記載する図。 パッケージのグループを、フォルダのような図で記載する。


IT専科から引用

コンポーネント図とコンポジット構造図

コンポジット構造図は、クラスやコンポーネントの内部構造を示すもので、コンポーネント図は、複数のクラスで構成される処理に、 インタフェースを用意し、あたかも1つのクラスのように扱ったもの。 接続するインタフェースを飴玉と飴玉を受けるクチのイメージで、提供側を◯───で表し、要求側を⊃──で表す。


IT専科から引用

配置図

配置図は、システムのハードウェア構成や通信経路などを表現するための図。 ハードウェアは直方体の絵で表現し、 デバイスの説明は、”≪device≫”などを示し、実行環境には、”≪executionEnvironment≫” などの目印で表現する。


IT専科から引用

プロセス管理とシェルスクリプト

ジョブ管理

プログラムを実行している時、それがすごくメモリも使い計算時間もかかる処理の場合、条件を変化させながら結果が欲しい時、どのように実行すべきだろうか?1つの処理が1時間かかるとして、画面を見ながら1時間後に処理が終わったことを確認してプログラムを実行するのか?

簡単な方法としては、1つ目の処理(仮にプログラムAとする)を実行させたままで、新しくウィンドウを開いてそこで新しい条件でプログラムを並行処理すればいい(プログラムBとする)と考えるかもしれない。しかし、メモリを大量に使用する処理をいくつも並行処理させると、仮想メモリが使われるようになる。結果的にスワッピングが発生する分、プログラムAを実行させた後にプログラムBを実行するための時間以上に、時間がかかることになる。

ここで、プログラムを並行処理させるか、逐次処理させるといった、JOB(ジョブ)管理について説明を行う。
以下の説明で、複雑で時間のかかる処理を実行するとサーバの負担が高くなるので指定時間の処理待ちを行うための sleep 命令を使う。

逐次実行と並行実行

プログラムを連続して実行(処理Aの後に処理Bを実行する)場合には、セミコロン”;” で区切って A ; B のように処理を起動する。

guest00@nitfcei:~$ echo A
A
guest00@nitfcei:~$ echo A ; echo B
A
B

プログラムを並行して実行(処理Aと処理Bを並行処理)する場合には、アンド”&”で区切って A & B のように処理を起動する。

guest00@nitfcei:~$ sleep 5 &
[1] 55
guest00@nitfcei:~$ echo A
A
[1]+ 終了  sleep 5
guest00@nitfcei:~$ sleep 2 & sleep 3
[1] 56
[1]+ 終了  sleep 2
guest00@nitfcei:~$ time ( sleep 1 ; sleep 1 )   # time コマンドは、コマンドの実行時間を測ってくれる。
real    0m2.007s
user    0m0.005s
sys     0m0.002s
guest00@nitfcei:~$ time ( sleep 1 & sleep 1 )
real    0m1.002s
user    0m0.003s
sys     0m0.000s

fg, bg, jobs コマンド

プログラムを実行中に、処理(ジョブ)を一時停止したり、一時停止している処理を復帰させたりするときには、fg, bg, jobs コマンドを使う。

  • 処理をしている時に、Ctrl-C を入力すると前面処理のプログラムは強制停止となる。
  • 処理をしている時に、Ctrl-Z を入力すると前面処理のプログラムは一時停止状態になる。
  • fg (フォアグラウンド) は、指定した処理を前面処理(キー入力を受け付ける処理)に変更する。
  • bg (バックグラウンド) は、指定した処理を後面処理(キー入力が必要になったら待たされる処理)に変更する。
  • jobs (ジョブ一覧) は、実行中や一時停止している処理(ジョブ)の一覧を表示する。
guest00@nitfcei:~$ sleep 10   # 途中で Ctrl-Z を入力する
^Z
[1]+ 停止  sleep 10
guest00@nitfcei:~$ fg
sleep 10                      # 一時停止していた sleep 10 を実行再開
guest00@nitfcei:~$ sleep 3
^Z
[1]+  停止  sleep 3
guest00@nitfcei:~$ sleep 4
^Z
[2]+  停止  sleep 4
guest00@nitfcei:~$ jobs
[1]-  停止  sleep 3           # [1],[2]というのはjob番号
[2]+  停止  sleep 4
guest00@nitfcei:~$ fg %1      # ジョブ番号1 を前面処理にする
sleep 3
guest00@nitfcei:~$ fg %2      # ジョブ番号2 を前面処理にする
sleep 4

ps, kill コマンド

OS では、プログラムの処理単位は プロセス(process) と呼ぶ。OS はプロセスごとにメモリの実行範囲などの管理を行う。一連のプロセスを組み合わせて実行する単位を ジョブ(job) と呼ぶ。

複数のプロセスは間違ったメモリアクセスで他のプロセスが誤動作するようでは、安心して処理が実行できない。そこで、OS は、プロセスが他のプロセスのメモリをアクセスすると強制停止させるなどの保護をしてくれる。しかし、プロセスと他のプロセスが協調して処理を行うための情報交換のためにメモリを使うことは困難である。プロセス間で情報交換が必要であれば、パイプ機能やプロセス間共有メモリ機能を使う必要がある

最近のOSでは、共通のメモリ空間で動き 並行動作する個々の処理は スレッド(thread) と呼び、その複数のスレッドをまとめたものがプロセスとなる。OS では、プロセスごとに番号が割り振られ、その番号を プロセスID(PID) と呼ぶ。実行中のプロセスを表示するには、ps コマンドを使う。

実行中のプロセスを停止する場合には、kill コマンドを用いる。停止するプログラムは、ジョブ番号(%1など) か プロセスID を指定する。

guest00@nitfcei:~$ sleep 3
^Z
[1]+  停止  sleep 3
guest00@nitfcei:~$ sleep 4
^Z
[2]+ 停止 sleep 4
guest00@nitfcei:~$ jobs
[1]- 停止 sleep 3                 # [1],[2]というのはjob番号
[2]+ 停止 sleep 4
guest00@nitfcei:~$ ps w          # プロセスの一覧(wを付けるとコマンドの引数も確認できる)
 PID TTY   STAT TIME     CMD
  13 pts/0 Ss   00:00:00 -bash
  84 pts/0 T    00:00:00 sleep 3
  85 pts/0 T    00:00:00 sleep 4
  86 pts/0 R    00:00:00 ps w
guest00@nitfcei:~$ kill %1 
[1]- Terminated  sleep 3
guest00@nitfcei:~$ kill -KILL 85
[2]+ 強制終了     sleep 4
guest00@nitfcei:~$ ps ax          # 他人を含めた全プロセスの一覧表示 
 PID TTY STAT TIME COMMAND
   1 ?   Ss   0:52 /sbin/init
   2 ?   S    0:00 [kthreadd]
   3 ?   I<   0:00 [rcu_gp]
   :

ここまでの授業では、OSでのリダイレクト・パイプの概念とプロセスの概念について説明を行ってきた。これによりプログラムの実行結果を他のプログラムに渡すことができる。これらの機能を使うと、いくつかのプログラムを次々と実行させるなどの自動化をしたくなってくる。そこで、これ以降では、OSとプログラムの間の情報を伝え合う基本機能の説明や、プログラムの起動をスクリプトとしてプログラム化するためのシェルスクリプト(shell script)について説明する。

環境変数

OSを利用していると、その利用者に応じた設定などを行いたい場合が多い。このような情報を管理する場合には、環境変数が使われる。環境変数はプロセス毎に管理され、プロセスが新しく子供のプロセス(子プロセス)を生成すると、環境変数は子プロセスに自動的に引き渡される。代表的な環境変数を以下に示す。

  • HOME – ユーザがログインした際の起点となるディレクトリであり、/home/ユーザ名 となっているのが一般的。
    シェルの中では”~” で代用できる。( “cd ~” で、最初のディレクトリに戻る )
  • LC_ALL, LANG – ユーザが使う言語。OSからのメッセージなどを日本語で表示したい場合には、ja_JP.UTF-8 などを指定。
  • TZ – ユーザの時差の情報(Time Zone) 日本であれば、”JST-9″ を設定するのが一般的。
    日本標準時 “JST” で、グリニッジ標準時(GMT)との時差を表す “-9” の組み合わせ。
  • PATH – ユーザがよく使うコマンドの保存されているディレクトリの一覧。/bin:/usr/bin の様にディレクトリ名を”:”区切りで書き並べる。
  • LD_LIBRARY_PATH – 共有ライブラリの保存されているディレクトリの一覧。

環境変数と同じように、シェルの中で使われるものはシェル変数と呼ぶ。この変数は、子プロセスに引き渡されない。

環境変数を表示するには、env コマンド(環境変数を表示)や、set コマンド(環境変数やシェル変数を表示)を用いる。シェルの中で特定の環境変数を参照する場合には、$変数名 とする。echo コマンドで PATH を表示するなら、”echo $PATH” とすればいい。

guest00@nitfcei:~$ env
SHELL=/bin/bash
:
guest00@nitfcei:~$ echo $PATH
/bin:/usr/bin:/usr/local/bin

変数に値を設定する場合には、“変数名=値” の様に設定する。この変数を環境変数に反映させるには、export コマンドを用いるか、“export 変数名=値” を用いる。

環境変数の中で PATH は、コマンドを実行する際にコマンドの保存先を探すための変数であり、例えば PATH=/bin:/usr/bin:/usr/local/bin であったばあい、shell は、最初に /bin の中からコマンドを探し、次に /usr/bin を探し、さらに /usr/local/bin の中からコマンドを探す。PATH の設定の注意点

((( 環境変数の設定 )))
guest00@nitfcei:~$ PATH=/bin:/usr/bin
guest00@nitfcei:~$ echo $PATH
guest00@nitfcei:~$ export PATH
guest00@nitfcei:~$ export PATH=/bin:/usr/bin:/usr/local/bin

((( PATHの確認 )))
guest00@nitfcei:~$ which zsh       # which はコマンドの場所を探してくれる
/bin/zsh
guest00@nitfcei:~$ export PATH=/usr/local/bin:/usr/bin:/bin
guest00@nitfcei:~$ which zsh
/usr/bin/zsh

((( LC_ALL,LANG の確認 )))
guest00@nitfcei:~$ export LC_ALL=C
guest00@nitfcei:~$ man man
(英語でマニュアルが表示される)
guest00@nitfcei:~$ export LC_ALL=ja_JP.UTF-8
guest00@nitfcei:~$ man man
(日本語でマニュアルが表示される)

((( TZタイムゾーンの確認 )))
guest00@nitfcei:~$ export TZ=GMT-0
guest00@nitfcei:~$ date
2022年 7月 4日 月曜日 05:23:23 GMT       # イギリスの時間(GMT=グリニッジ標準時間)が表示された
guest00@nitfcei:~$ export TZ=JST-9
guest00@nitfcei:~$ date                 # 日本時間(JST=日本標準時間)で表示された
2022年 7月 4日 月曜日 14:23:32 JST
guest00@nitfcei:~$ TZ=GMT-0 date ; date # 環境変数を一時的に変更して date を実行
2022年 7月 4日 月曜日 05:23:23 GMT
2022年 7月 4日 月曜日 14:23:32 JST

環境変数 PATH の考え方は、Windows でも同じように存在し、PATH を変更する場合には、「設定 – システムのプロパティ – 詳細設定 – 環境変数」により編集可能となる。

プログラムとコマンドライン引数と環境変数

この後に説明するシェルスクリプトなどの機能を用いる場合は、自分のプログラムとのデータのやり取りにコマンドライン引数と環境変数を使う。また、プログラムの実行に失敗した時に別の処理を実行するためには、main関数の返り値を使うことができる。

コマンドライン引数

コマンドライン引数は、プログラムを起動する時の引数として書かれている情報であり、C言語でこの情報を用いる時には、main関数の引数”int main( int argc , char** argv ) …” により値をもらうことができ、以下のようなプログラムを記述することで受け取ることができる。
# 参考として Java の場合のコマンドライン引数の取得方法も示す。

((( argv.c )))
#include <stdio.h>

int main( int argc , char** argv ) {
    for( int i = 0 ; i < argc ; i++ ) {
        printf( "argv[%d] = %s\n" , i , argv[ i ] ) ;
    }
    return 0 ;
}
((( argv.c を実行してみる )))
guest00@nitfcei:~$ cp /home0/Challenge/3-shellscript/argv.c .
guest00@nitfcei:~$ gcc argv.c
guest00@nitfcei:~$ ./a.out 111 aaa 234 bcdef
argv[0] = ./a.out
argv[1] = 111
argv[2] = aaa
argv[3] = 234
argv[4] = bcdef

((( Argv.java )))
import java.util.* ;

public class Argv {
        public static void main( String[]  args ) throws Exception {
                for( int i = 0 ; i < args.length ; i++ )
                        System.out.println( "args["+i+"] = "+args[i] ) ;
        }
}
((( Argv.java を実行してみる )))
guest00@nitfcei:~$ cp /home0/Challenge/3-shellscript/Argv.java .
guest00@nitfcei:~$ javac Argv.java
guest00@nitfcei:~$ java Argv 111 aaa 234 bcdef
args[0] = 111            # Java では コマンド名argv[0]は引数に含まれない
args[1] = aaa
args[2] = 234
args[3] = bcdef

注意点:コマンドライン引数の0番目には、プロセスを起動した時のプロセス名が入る。

環境変数の参照

C言語のmain関数は、コマンドライン引数のほかに環境変数も参照することができる。envpの情報は、getenv関数でも参照できる。

((( argvenvp.c )))
#include <stdio.h>
int main( int argc , char** argv , char** envp ) {
    // コマンドライン引数argc,argvの処理
    for( int i = 0 ; i < argc ; i++ ) {
        printf( "argv[%d] = %s\n" , i , argv[ i ] ) ;
    }
    // 環境変数envpの処理
    for( int i = 0 ; envp[i] != NULL ; i++ ) {
        printf( "envp[%d] = %s\n" , i , envp[ i ] ) ;
    }
    return 0 ;
}
((( argvenvp.c を実行してみる )))
guest00@nitfcei:~$ cp /home0/Challenge/3-shellscript/argvenvp.c .
guest00@nitfcei:~$ gcc argvenvp.c
guest00@nitfcei:~$ ./a.out
argv[0] = ./a.out
envp[0] = SHELL=/bin/bash
:

プロセスの返す値

プログラムによっては、処理が上手くいかなかったことを検知して、別の処理を実行したいかもしれない。
こういう場合には、C言語であれば main の返り値に 0 以外の値で return させる。( exit関数を使ってもいい )
以下の例では、入力値の平均を出力するが、データ件数が0件であれば平均値を出力できない。こういう時に、”return 1 ;” のように値を返せば、シェル変数 $? (直前のコマンドの返り値) に return で返された値を参照できる。

((( average.c )))
#include <stdio.h>
int main() {
    int count = 0 ;
    int sum = 0 ;
    char buff[ 1024 ] ;
    while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) {
        int value ;
        if ( sscanf( buff , "%d" , &value ) == 1 ) {
            sum += value ;
            count++ ;
        }
    }
    if ( count == 0 ) {
        // データ件数が0の場合は平均が計算できない。
        fprintf( stderr , "No data\n" ) ;
        // プログラムが失敗したことを返すには 0 以外の値を return する。
        return 1 ;      // exit( 1 ) ;
    } else {
            printf( "%lf\n" , (double)sum / (double)count ) ;
    }
    return 0 ;
}

((( average.c を動かしてみる )))
guest00@nitfcei:~$ gcc average.c
guest00@nitfcei:~$ ./a.out
12
14
^D        # Ctrl-D で入力を終わらせる
13.00000
guest00@nitfcei:~$ echo $?       # プロセスの実行結果の値を参照するためのシェル変数 $?
0
guest00@nitfcei:~$ ./a.out
^D        # データを入力せずにすぐに終了させる。
No data
guest00@nitfcei:~$ echo $?
1

シェルスクリプト

今まで、コマンドラインで命令の入力をしてきたが、こういったキーボードと対話的処理を行うプログラムは shell (シェル) と呼ばれ、今回の演習では、/bin/bash を用いている。 shell は、キーボードとの対話的処理だけでなく、shell で入力するような処理をファイルに記録しておき、そのファイルに記載されている順に処理を実行することができる。

guest00@nitfcei:~$ cp /home0/Challenge/3-shellscript/helloworld.sh .
guest00@nitfcei:~$ cat helloworld.sh
#!/bin/bash

echo "Hello World"

message="こんにちは"                       # シェル変数への代入
echo "Hello World = $message"             # シェル変数の参照

guest00@nitfcei:~$ bash helloworld.sh     # bash で helloworld.sh を実行する
Hello World
Hello World = こんにちは

シェルスクリプトの基本は、キー入力で実行するようなコマンドを書き並べればいい。

しかし、プログラムを実行する度に、bash ファイル名 と入力するのは面倒。こういう時には以下の2つの設定を行う。

  1. シェルスクリプトの先頭行に 実行させる shell の名前の前に “#!” をつける。
    この行は、通称”シバン shebang (シェバン)“と呼ばれ、bashで実行させたいのなら”#!/bin/bash“、プログラミング言語 Perl で実行させたいのなら “#!/usr/bin/perl” とか、Python で実行させたいのなら、”#!/usr/bin/python” のようにすればいい。(今回のサンプルはすでに記入済み)
  2. 保存したスクリプトに対して、実行権限を与える。
    “ls -al “で “rw-r–r–” のようなファイルの書き込みパーミッションが表示されるが、通常ファイルの場合は、“x”の表示があると、プログラムとして実行可能となる。(フォルダであれば、rwxr-xr-x のように”x”の表示があると、フォルダの中に入ることができる)
((( 実効権限の設定 )))
guest00@nitfcei:~$ chmod 755 helloworld.sh
guest00@nitfcei:~$ ./helloworld.sh
Hello World
Hello World = こんにちは

$HOME/.bashrc

シェルスクリプトは、Linux の環境設定を行うためのプログラム言語として使われている。

例えば、ユーザがログインする際には、そのユーザがどういった言語を使うのか(LC_LANG,LANG)や、どういったプログラムをよく使うのか(PATH,LD_LIBRARY_PATH)などは、そのユーザの好みの設定を行いたい。こういう時に、shell に bash を使っているのであれば、$HOME/.bashrc に、shell を使う際の自分好みの設定を記載すればいい。

((( $HOME/.bashrc の例 )))
#!/bin/bash

# PATHの設定
export PATH=/usr/local/bin:/usr/bin:/bin

# MacOS でインストールされているソフトで PATH を切り替える
if [ -d /opt/homebrew/bin ]; then  # /opt/homebrew/bin のディレクトリがあるならば...
        # HomeBrew
        export PATH=/opt/homebrew/bin:$PATH
elif [ -d /opt/local/bin ]; then   # /opt/local/bin のディレクトリがあるならば...
        # MacPorts
        export PATH="/opt/local/bin:$PATH"
fi

ユーザ固有の設定以外にも、OSが起動する時に、起動しておくべきプログラムの初期化作業などにもシェルスクリプトが使われている。
例えば、/etc/init.d/ フォルダには、Webサーバ(apache2)やsshサーバ(ssh) といったサーバを起動や停止をするための処理が、シェルスクリプトで記載してあり、OS 起動時に必要に応じてこれらのシェルスクリプトを使ってサーバソフトを起動する。(ただし最近は systemd が使われるようになってきた)

理解度確認

システム

最新の投稿(電子情報)

アーカイブ

カテゴリー