前回の授業で説明したハッシュ法は、データから簡単な計算(ハッシュ関数)で求まるハッシュ値をデータの記憶場所とする。しかし、異なるデータでも同じハッシュ値が求まった場合、どうすれば良いか?
ハッシュ法を簡単なイメージで説明すると、100個の椅子(ハッシュ表)が用意されていて、1クラスの学生が自分の電話番号の末尾2桁(ハッシュ関数)の場所(ハッシュ値)に座るようなもの。自分のイスに座ろうとしたら、同じハッシュ値の人が先に座っていたら、どこに座るべきだろうか?
オープンアドレス法
先の椅子取りゲームの例え話であれば、先に座っている人がいた場合、最も簡単な椅子に座る方法は、隣が空いているか確認して空いていたらそこに座ればいい。
これをプログラムにしてみると、以下のようになる。このハッシュ法は、求まったアドレスの場所にこだわらない方式でオープンアドレス法と呼ばれる。
// オープンアドレス法 // table[] は大域変数で0で初期化されているものとする。 // 配列に電話番号と名前を保存 void entry( int phone , name ) { int idx = hash_func( phone ) ; while( table[ idx ].phone != 0 ) idx = (idx + 1) % HASH_SIZE ; // ひとつ後ろの席 } // idx++ でないのは何故? table[ idx ].phone = phone ; strcpy( table[ idx ].name , name ) ; } // 電話番号から名前を調べる char* search( int phone ) { int idx = hash_func( phone ) ; while( table[ idx ].phone != 0 ) { if ( table[ idx ].phone == phone ) return table[ idx ].name ; idx = (idx + 1) % HASH_SIZE ; // ひとつ後ろの席 } // idx++ でないのは何故? return NULL ; // 見つからなかった }
注意:このプログラムは、ハッシュ表すべてにデータが埋まった場合、無限ループとなるので、実際にはもう少し改良が必要である。
この実装方法であれば、ハッシュ表にデータが少ない場合は、ハッシュ値を計算すれば終わり。よって、処理時間のオーダはO(1)となる。しかし、ハッシュ表がほぼ埋まっている状態だと、残りわずかな空き場所を探すようなもの。
チェイン法
前に述べたオープンアドレス法は、ハッシュ衝突が発生した場合、別のハッシュ値を求めそこに格納する。配列で実装した場合であれば、ハッシュ表のサイズ以上の データ件数を保存することはできない。
チェイン法は、同じハッシュ値のデータをグループ化して保存する方法。 同じハッシュ値のデータは、リスト構造とするのが一般的。ハッシュ値を求めたら、そのリスト構造の中からひとつづつ目的のデータを探す処理となる。
この処理にかかる時間は、データ件数が少なければ、O(1) となる。しかし、ハッシュ表のサイズよりかなり多いデータ件数が保存されているのであれば、ハッシュ表の先に平均「N/ハッシュ表サイズ」件のデータがリスト構造で並んでいることになるので、O(N) となってしまう。
#define SIZE 100 int hash_func( int ph ) { return ph % SIZE ; } struct PhoneNameList { int phone ; char name[ 20 ] ; struct PhoneNameList* next ; } ; struct PhoneNameList* hash[ SIZE ] ; // NULLで初期化 struct PhoneNameList* cons( int ph , char* nm , struct PhoneNameList* nx ) { struct PhoneNameList* ans ; ans = (struct PhoneNameList*)malloc( sizeof( struct PhoneNameList ) ) ; if ( ans != NULL ) { ans->phone = ph ; strcpy( ans->name , nm ) ; ans->next = nx ; } return ans ; } void entry( int phone , char* name ) { int idx = hash_func( phone ) ; hash[ idx ] = cons( phone , name , hash[ idx ] ) ; } char* search( int phone ) { int idx = hash_func( phone ) ; struct PhoneNameList* p ; for( p = hash[ idx ] ; p != NULL ; p = p->next ) { if ( p->phone == phone ) return p->name ; } return NULL ; }
これまでの授業の中では、データを効率よく扱うためのデータ構造について議論をしてきた。これまでのプログラムの中では、データ構造のために動的メモリ(特にヒープメモリ)を多用してきた。ヒープメモリでは、malloc() 関数により指定サイズのメモリ空間を借りて、処理が終わったら free() 関数によって返却をしてきた。この返却を忘れたままプログラムを連続して動かそうとすると、返却されなかったメモリが使われない状態(メモリリーク)となり、メモリ領域不足から他のプログラムの動作に悪影響を及ぼす。
メモリリークを防ぐためには、malloc() で借りたら、free() で返すを実践すればいいのだが、複雑なデータ構造になってくると、こういった処理が困難となる。そこで、ヒープメモリの問題点について以下に説明する。
共有のあるデータの取扱の問題
リスト構造で集合計算の和集合を求める処理を考える。
// 集合和を求める処理 struct List* join( struct List* a , struct List* b ) { struct List* ans = b ; for( ; a != NULL ; a = a->next ) if ( !find( ans , a->data ) ) ans = cons( a->data , ans ) ; return ans ; } void list_del( struct List* p ) { // ダメなプログラムの例 while( p != NULL ) { // for( ; p != NULL ; p = p->next ) struct List* d = p ; // free( p ) ; p = p->next ; free( d ) ; } } void main() { // リストの生成 struct List* a = cons( 1 , cons( 2 , cons( 3 , NULL ) ) ) ; struct List* b = cons( 2 , cons( 3 , cons( 4 , NULL ) ) ) ; struct List* c = join( a , b ) ; // c = { 1, 2, 3, 4 } // ~~~~~~~ ここは b // a,b,cを使った処理 // 処理が終わったのでa,b,cを捨てる list_del( a ) ; list_del( b ) ; list_del( c ) ; // list_del(b)ですでに消えている } // このためメモリー参照エラー発生
このようなプログラムでは、c=join(a,b) ; が終わると下の図のようなデータ構造となる。しかし処理が終わってリスト廃棄list_del(a), list_del(b), listdel(c)を行おうとすると、bの先のデータは廃棄済みなのに、list_del(c)の実行時に、その領域を触ろうとして異常が発生する。
実体をコピーする方法
こういった共有の問題の一つの解決法としては、共有が発生しないように実体を別にコピーする方法もある。しかし、この方法はメモリがムダになる場合もあるし、List内のデータを修正した時に、実体をコピーした部分でも修正が反映されてほしい場合に問題となる。
// 実体をコピーする(簡潔に書きたいので再帰を使う) struct List* copy( struct List* p ) { if ( p != NULL ) return cons( p->data , copy( p->next ) ) ; else return NULL ; } // 共有が無い集合和を求める処理 struct List* join( struct List* a , struct List* b ) { struct List* ans = copy( b ) ; // ~~~~~~~~~実体をコピー for( ; a != NULL ; a = a->next ) if ( !find( ans , a->data ) ) ans = cons( a->data , ans ) ; return ans ; }
参照カウンタ法
上記の問題は、b の先のリストが c の一部とデータを共有しているために発生する。この解決方法として簡単な方法では、参照カウンタ法が用いられる。
参照カウンタ法では、データを参照するポインタの数をデータと共に保存する。
- データの中にポインタ数を覚える参照カウンタを設け、データを生成した時に1とする。
- 処理の中で共有が発生すると、参照カウンタをカウントアップする。
- データを捨てる際には、参照カウンタをカウントダウンし、0になったら本当にそのデータを消す。
struct List { int refc ; // 参照カウンタ int data ; // データ struct List* next ; // 次のポインタ } ; struct List* cons( int x , struct List* p ) { struct List* n = (struct List*)malloc( sizeof( struct List* ) ) ; if ( n != NULL ) { n->refc = 1 ; // 初期状態は参照カウンタ=1 n->data = x ; n->next = p ; } return n ; } struct List* copy( struct List* p ) { p->refc++ ; // 共有が発生したら参照カウンタを増やす。 return p ; } // 集合和を求める処理 struct List* join( struct List* a , struct List* b ) { struct List* ans = copy( b ) ; // ~~~~~~~~~共有が発生するのでrefc++ for( ; a != NULL ; a = a->next ) if ( !find( ans , a->data ) ) ans = cons( a->data , ans ) ; return ans ; } void list_del( strcut List* p ) { // 再帰で全廃棄 if ( p != NULL && --(p->refc) <= 0 ) { // 参照カウンタを減らし // ~~~~~~~~~~~ list_del( p->next ) ; // 0ならば本当に消す free( p ) ; } } int main() { // リストの生成 struct List* a = cons( 1 , cons( 2 , cons( 3 , NULL ) ) ) ; struct List* b = cons( 2 , cons( 3 , cons( 4 , NULL ) ) ) ; struct List* c = join( a , b ) ; // a,b,cを使った処理 // 処理が終わったのでa,b,cを捨てる list_del( a ) ; // aの要素は全部refc=1なので普通に消えていく list_del( b ) ; // bは、joinの中のcopy時にrefc=2なので、 // この段階では、refc=2 から refc=1 になるだけ list_del( c ) ; // ここで全部消える。 }
unix i-nodeで使われている参照カウンタ
unixのファイルシステムの基本的構造 i-node では、1つのファイルを別の名前で参照するハードリンクという機能がある。このため、ファイルの実体には参照カウンタが付けられている。unix では、ファイルを生成する時に参照カウンタを1にする。ハードリンクを生成すると参照カウンタをカウントアップ”+1″する。ファイルを消す場合は、基本的に参照カウンタのカウントダウン”-1″が行われ、参照カウンタが”0″になるとファイルの実体を消去する。
以下に、unix 環境で 参照カウンタがどのように使われているのか、コマンドで説明していく。
$ echo a > a.txt $ ls -al *.txt -rw-r--r-- 1 t-saitoh t-saitoh 2 12月 21 10:07 a.txt ~~~ # ここが参照カウンタの値 $ ln a.txt b.txt # ハードリンクでコピーを作る $ ls -al *.txt -rw-r--r-- 2 t-saitoh t-saitoh 2 12月 21 10:07 a.txt -rw-r--r-- 2 t-saitoh t-saitoh 2 12月 21 10:07 b.txt ~~~ # 参照カウンタが増えているのが分かる $ rm a.txt # 元ファイルを消す $ ls -al *.txt -rw-r--r-- 1 t-saitoh t-saitoh 2 12月 21 10:07 b.txt ~~~ # 参照カウンタが減っている $ ln -s b.txt c.txt # シンボリックリンクでコピーを作る $ ls -al *.txt -rw-r--r-- 1 t-saitoh t-saitoh 2 12月 21 10:07 b.txt lrwxrwxrwx 1 t-saitoh t-saitoh 5 12月 21 10:10 c.txt -> b.txt $ rm b.txt # 元ファイルを消す $ ls -al *.txt lrwxrwxrwx 1 t-saitoh t-saitoh 5 12月 21 10:10 c.txt -> b.txt $ cat c.txt # c.txt は存在するけどその先の実体 b.txt は存在しない cat: c.txt: そのようなファイルやディレクトリはありません