再帰呼び出しの基本
次に、再帰呼び出しを含むような処理の処理時間見積もりについて解説をおこなう。そのまえに、再帰呼出しと簡単な処理の例を説明する。
再帰関数は、自分自身の処理の中に「問題を小さくした」自分自身の呼び出しを含む関数。プログラムには問題が最小となった時の処理があることで、再帰の繰り返しが止まる。
// 階乗 (末尾再帰) int fact( int x ) { if ( x <= 1 ) return 1 ; else return x * fact( x-1 ) ; } // ピラミッド体積 (末尾再帰) int pyra( int x ) { if ( x <= 1 ) return 1 ; else return x*x + pyra( x-1 ) ; } // フィボナッチ数列 (非末尾再帰) int fib( int x ) { if ( x <= 2 ) return 1 ; else return fib( x-1 ) + fib( x-2 ) ; }
階乗 fact(N) を求める処理は、以下の様に再帰が進む。
また、フィボナッチ数列 fib(N) を求める処理は以下の様に再帰が進む。
再帰呼び出しの処理時間
次に、この再帰処理の処理時間を説明する。 最初のfact(),pyra()については、 x=1の時は、関数呼び出し,x<=1,return といった一定の処理時間を要し、T(1)=Ta で表せる。 x>1の時は、関数呼び出し,x<=1,*,x-1,returnの処理(Tb)に加え、x-1の値で再帰を実行する処理時間T(N-1)がかかる。 このことから、 T(N)=Tb=T(N-1)で表せる。
} 再帰方程式
このような、式の定義自体を再帰を使って表した式は再帰方程式と呼ばれる。これを以下のような代入の繰り返しによって解けば、一般式 が得られる。
T(1)=Ta
T(2)=Tb+T(1)=Tb+Ta
T(3)=Tb+T(2)=2×Tb+Ta
:
T(N)=Tb+T(N-1)=Tb + (N-2)×Tb+Ta
一般的に、再帰呼び出しプログラムは(考え方に慣れれば)分かりやすくプログラムが書けるが、プログラムを実行する時には、局所変数や関数の戻り先を覚える必要があり、深い再帰ではメモリ使用量が多くなる。
ただし、fact() や pyra() のような関数は、プログラムの末端で再帰が行われている。(fib()は、再帰の一方が末尾ではない)
このような再帰は、末尾再帰(tail recursion) と呼ばれ、関数呼び出しの return を、再帰処理の先頭への goto 文に書き換えるといった最適化が可能である。言い換えるならば、末尾再帰の処理は繰り返し処理に書き換えが可能である。このため、末尾再帰の処理をループにすれば再帰のメモリ使用量の問題を克服できる。
再帰を含む一般的なプログラム例
ここまでのfact()やpyra()のような処理の再帰方程式は、再帰の度にNの値が1減るものばかりであった。もう少し一般的な再帰呼び出しのプログラムを、再帰方程式で表現し、処理時間を分析してみよう。
以下のプログラムを実行したらどんな値になるであろうか?それを踏まえ、処理時間はどのように表現できるであろうか?
int array[ 8 ] = { 3 , 6 , 9 , 1 , 8 , 2 , 4 , 5 , } ; int sum( int a[] , int L , int R ) { // 非末尾再帰 if ( R - L == 1 ) { return a[ L ] ; } else { int M = (L + R) / 2 ; return sum( a , L , M ) + sum( a , M , R ) ; } } int main() { printf( "%d¥n" , sum( array , 0 , 8 ) ) ; return 0 ; }
このプログラムでは、配列の合計を計算しているが、引数の L,R は、合計範囲の 左端(左端のデータのある場所)・右端(右端のデータのある場所+1)を表している。そして、再帰のたびに2つに分割して解いている。
このような、処理を(この例では半分に)分割し、分割したそれぞれを再帰で計算し、その処理結果を組み合わせて最終的な結果を求めるような処理方法を、分割統治法と呼ぶ。
このプログラムでは、対象となるデータ件数(R-L)をNとおいた場合、実行される命令からsum()の処理時間Ts(N)は次の再帰方程式で表せる。
← Tβ + (L〜M)の処理時間 + (M〜R)の処理時間
これを代入の繰り返しで解いていくと、
ということで、このプログラムの処理時間は、 で表せる。
ハノイの塔
ここまでは、簡単な再帰呼び出しのプログラムを例にして再帰方程式などの説明を行った。次に「ハノイの塔」の処理時間を例題に、プログラムの処理時間について分析を行う。
ハノイの塔は、3本の塔にN枚のディスクを積み、(1)1回の移動ではディスクを1枚しか動かせない、(2)ディスクの上により大きいディスクを積まない…という条件で、山積みのディスクを目的の山に移動させるパズル。
一般解の予想
ハノイの塔の移動回数を とした場合、 少ない枚数での回数の考察から、 以下の一般式で表せることが予想できる。
… ①
この予想が常に正しいことを証明するために、ハノイの塔の処理を、 最も下のディスク1枚への操作と、その上の(N-1)枚のディスクへの操作に分けて考える。
再帰方程式
上記右の図より、N枚の移動をするためには、上に重なるN-1枚を移動させる必要があるので、
… ②
… ③
ということが言える。(これがハノイの塔の移動回数の再帰方程式)
ディスクが枚の時、予想①が正しいのは明らか①,②。
ディスクが 枚で、予想が正しいと仮定すると、 枚では、
… ③より
… ①を代入
… ①のの場合
となり、 枚でも、予想が正しいことが証明された。 よって数学的帰納法により、1枚以上で予想が常に成り立つことが証明できた。
また、ハノイの塔の処理時間は、で表せる。