ホーム » スタッフ » 斉藤徹 » 講義録 » 情報構造論 » AVLと意思決定木と演算子

2022年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

検索・リンク

AVLと意思決定木と演算子

前回、2分探索木へのデータ追加の説明と、演習課題を行っていたが、演習時間としては短いので、今日も前半講義で残り時間は演習とする。

2分探索木へのデータ追加と不均一な木の成長

先週の講義で説明していた、entry() では、データを追加すべき末端を探し、追加する処理であった。

しかし、前回のプログラムで、以下のような順序でデータを与えたら、どのような木が出来上がるであろうか?

  • 86, 53, 11 – 降順のデータ
  • 12, 24, 42 – 昇順のデータ

この順序でデータが与えられると、以下のような木が出来上がってしまう。このような木では、データを探しても1回の比較でもデータ件数が1つ減るだけで、O(N)となってしまう。通常のデタラメな順序でデータが与えられれば、木はほぼ左右均等に成長するはずである。

AVL木

このような、不均一な木が出来上がっても、ポインタの繋ぎ変えで検索回数を改善できる。例えば、以下のような木では、赤の左側に偏っている。(赤の左の枝は深さ=3段、青の枝は深さ=1段)

このような場合でも、最初、青の状態であっても、不均一な部分で赤のようなポインタの繋ぎ変えを行えば、2分探索木の要件を満たしたまま、木の段数を均一に近づけることができる。この例では、11,65,92の木が、右回転して 11 の木の位置が上がっている。(右回転)

この様に、左右の枝の大きさが不均一な場所を見つけ、右回転や左回転を行う処理を繰り返すことで、段数が均一な2分探索木に修正ができる。この様な処理でバランスの良い木に修正された木は、AVL木と呼ばれる。

理解確認

  • 木の根からの段数を求める関数 tree_depth() を作成せよ。
    例えば、上のAVL木の説明の図であれば、4段なので4を返すこと。
// 木の段数を数える関数
_____ tree_depth( _______________ p ) {
   if ( p == NULL ) {
      return _____ ;
   } else {
      int d_L = ______________ ;
      int d_R = ______________ ;
      if ( d_L > d_R )
         return _____ ;
      else
         return _____ :
   }
}

// pをつなぎ替え上部を返り値で返す。
struct Tree*rot_right( struct Tree* p ) {
   struct Tree* pl = p->left ;
   struct Tree* pr = pl->right ;
   pl->right = p ;
   p->left = = pr ;
   return pl ;
}
int main() {
   printf( "%d¥n" , tree_depth( top ) ) ;
   top = rot_right( top ) ;
   return 0 ;
}

ここまで2分探索木に関連したデータ構造の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木を紹介する。

意思決定木

意思決定木の説明ということで、yes/noクイズの例を示しながら、2分木になっていることを 説明しプログラムを紹介。

   ((意思決定木の例:小さい子供が発熱した時))
       38.5℃以上の発熱がある?
      no/         \yes
   元気がある?        むねがひいひい?
 yes/    \no      no/     \yes
様子をみる 氷枕で病院  解熱剤で病院  速攻で病院

このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。これは2分木と同じである。左右に枝のあるものは質問であり、yesの枝もnoの枝もない末端は最終決断を表す。このようなデータ構造は意思決定木と呼ばれ、質問と決断の処理は以下のように記述ができる。

struct Tree {
   char *qa ;
   struct Tree* yes ;
   struct Tree* no ;
} ;
struct Tree* dtree( char *s ,
                    struct Tree* l , struct Tree* r )
{  struct Tree* n ;
   n = (struct Tree*)malloc( sizeof( struct Tree ) ) ;
   if ( n != NULL ) {
      n->qa = s ;
      n->yes = l ;
      n->no = r ;
   }
   return n ;
}
void main() {
   struct Tree* p =
      dtree( "38.5℃以上の発熱がある?" ,
             dtree( "胸がひぃひぃ?" ,
                    dtree( "速攻で病院",  NULL,NULL ) ,
                    dtree( "解熱剤で病院",NULL,NULL ) ) ,
             dtree( "元気がある?" ,
                    dtree( "様子をみる",  NULL,NULL ) ,
                    dtree( "氷枕で病院",  NULL,NULL ) ) ) ;
   // 決定木をたどる
   struct Tree* d = p ;
   while( d->yes != NULL || d->no != NULL ) {
      printf( "%s¥n" , d->qa ) ;
      scanf( "%d" , &ans ) ;
      // 回答に応じてyes/noの枝に進む。
      if ( ans == 1 )      // yesを選択
         d = d->yes ;
      else if ( ans == 0 ) // noを選択
         d = d->no ;
   }
   // 最終決定を表示
   printf( "%s¥n" , d->qa ) ;
}

2分木の応用として式の表現の説明を行うけど、その前に計算式の一般論の説明を行う。

逆ポーランド記法

一般的に 1*2 + 3*4 と記載すると、数学的には演算子の優先順位を考慮して、(1*2)+(3*4) のように乗算を先に行う。このような優先順位を表現する時に、()を使わない方法として、逆ポーランド記法がある。

演算子の書き方には、前置記法、中置記法、後置記法があり、後置記法は、「2と3を掛ける、それに1を加える」と捉えると、日本語の処理と似ている。

中置記法 1+2*3
前置記法 +,1,*,2,3
後置記法 1,2,3,*,+  # 1と「2と3をかけた値」をたす。

後置記法は、一般的に逆ポーランド記法(Reverse Polish Notation)とも呼ばれ、式をコンピュータで実行する際の処理と似ている。

演算子の右結合・左結合

例えば、”1/2*3″という式が与えられたとする。この結果は、1/6だろうか?3/2だろうか?

一般的な数学では、優先順位が同じ演算子が並んだ場合、左側から計算を行う。つまり”1/2*3″は、”(1/2)*3″を意味する。こういった左側の優先順位が高い演算子は左結合の演算子という。

ただしC言語では、”a = b = c = 0″ と書くと、”a = (b = (c = 0))” として扱われる。こういった代入演算子は、 右結合の演算子である。

理解度確認

以下の式を指定された書き方で表現せよ。

逆ポーランド記法 1,2,*,3,4,*,+ を中置記法で表現せよ。
中置記法 (1+2)*3-4*5 を逆ポーランド記法で表現せよ。

以前の情報処理技術者試験では、スタックの概念の理解の例題として、逆ポーランド記法への変換アルゴリズムのプログラム作成が出題されることが多かったが、最近は出題されることはなくなってきた。