ホーム » スタッフ » 斉藤徹 » 講義録 » データベース » B木とB+木とハッシュ法

2021年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

検索・リンク

B木とB+木とハッシュ法

データベースでは、キーなどの値を高速に探し出すために、単純なデータが並んだだけのテーブルとは別に、検索専用のデータ構造を別に持たせることが多い。これらの検索用のデータは、インデックスファイルと呼ばれる。

以下に、データベースの各レコードを高速に参照するための仕組みについて説明する。

B木

データベースのデータを扱う場合には、B木を用いることが多い。

複数のデータを格納するノードは、位数Nであれば、2✕N個のデータと、その間のデータを持つノードへの2N+1個のポインタで構成される。

ノードにデータを加える場合(あるいは削除する場合)は、頻繁にノードのポインタの付け替えが発生しないように、データがN個を下回った時や、2N個を超える場合に以下のような処理を行う。ノード内のデータ数が2Nを超える場合は、均等に木構造が成長するように、中央値を上のノードに移動し、ノードを2分割する。

データを削除することでN個を下回る場合は、隣接するノードからデータを移動する。(上図の緑部分のように上位ノードの値を交えながら移動する)

このような処理を行うことで、極力不均一に成長した木構造が発生しないようにB木は管理されている。

B+木とシーケンスセット

再帰的な木構造のB木では、特定のデータを探す場合には、O(log N)で検索が可能である。

しかしながら、直積のようなすべてのデータを対象とする処理を行う場合、単純なB木では再帰呼出しをしながらの処理を必要とすることから、複雑な処理が発生する。そこで、データ列を横方向にアクセスするための単純リストであるシーケンスセットをB木と並行して管理するデータ構造B+木である。

データを検索する場合は、B木構造部を用い、全データ処理は、シーケンスセットを用いる。

ハッシュ法

ハッシュ表は、データの一部をとりだしてハッシュ値を求め、そのハッシュ値を番地とする場所にデータを保存する方法である。しかし、データの一部を取り出すため、異なるデータに対して同じハッシュ値となる場合がある。これをハッシュ衝突とよぶ。この際のデータの保存の方法から、2つの方式がある。

  1. オープンアドレス法
    ハッシュ表がすでに埋まっていたら、別の保存場所を探す方式。
  2. チェイン法
    同じハッシュ値となるデータをリスト構造で保存する方法。