ホーム » スタッフ » 斉藤徹 » 講義録 » データベース

データベース」カテゴリーアーカイブ

2019年8月
« 7月    
 123
45678910
11121314151617
18192021222324
25262728293031

最近の投稿(電子情報)

アーカイブ

カテゴリー

授業アンケート結果(ぷちブルーな気分)

情報ネットワーク基礎(3EI/後期)

楽しんで受講してくれた人からの意見があり、ポイントでも85ポイントと高評価であった。内容理解やシラバスについてポイントが若干低いようであるが、誤差の範疇と思われる。理解把握のポイントが最も低く、理解度確認のための質問などをもう少し増やしても良かったかと思う。

情報制御基礎(3年学際科目/前期)

学際科目ということで、初めて実施した科目であり、他学科からも受講生がある内容で、ポイントも70ポイントと低い評価であった。
プログラムを授業でやっていない学科の学生から、内容が理解できないとの意見が多かった。今年度は、他学科の学生にもわかるように、プログラムの説明を増やしたり、プログラムよりも基本的な内容を増やしたいと考えている。

情報構造論(4EI/通年)

意見の欄には、例年になく辛辣な意見もあった。他の同クラスのアンケートでも、全般的に厳しい意見が多くみられ、ポイントは74.8と例年よりも低くいが、このクラスのオフセットとも考えられる。
昨年から講義資料のWeb掲載などを行い、それを使った授業を中心としているが、ノート作成ができていない学生から、ノートをとる時間を十分にとってほしいとの意見があった。もう少し、授業の時間の作り方などを考えたいが、一方で不まじめな学生がノートもも一切とらないで受講する姿は、理解する意欲に欠けていることもあり、どのような対処とすべきか、時間をかけて考えていきたい。

データベース(5EI/後期)

ポイントでは78.6と、若干低めの評価であった。演習量や試験についての評価が他に比べて若干低く、意見でも図や表といった具体例を交えた例での説明を増やしたほうが理解が進むとの建設的な意見もあった。資料などもWebでの公開などを進めているが、今後も実例などを増やし解りやすい資料を目指したい。

オブジェクト指向プログラミング(PS2/前期)

他学科出身の受講者も含まれるため、例年進度に注意しながら授業を進めているが、ポイントでは80ポイントで、例年並みの評価であった。
もう少し、演習などをタイムリーに行いながら授業を進めたいと考えているが、演習環境などの準備も必要で自主学習などの課題を検討したいと思う。

B木とB+木とハッシュ法

B木

データベースのデータを扱う場合には、B木を用いることが多い。

複数のデータを格納するノードは、位数Nであれば、2✕N個のデータと、その間のデータを持つノードへの2N+1個のポインタで構成される。

ノードにデータを加える場合は、頻繁にノードのポインタの付け替えが発生しないように、データがN個を下回った時や、2N個を超える場合とする。ノード内のデータ数が2Nを超える場合は、均等に木構造が成長するように、中央値を上のノードに移動し、ノードを2分割する。

B+木とシーケンスセット

再帰的な木構造のB木では、特定のデータを探す場合には、O(log N)で検索が可能である。

しかしながら、直積のようなすべてのデータを対象とする処理を行う場合、単純なB木では再帰呼出しをしながらの処理を必要とすることから、複雑な処理が発生する。そこで、データ列を横方向にアクセスするための単純リストであるシーケンスセットをB木と並行して管理するデータ構造がB+木である。

データを検索する場合は、B木構造部を用い、全データ処理は、シーケンスセットを用いる。

ハッシュ法

ハッシュ表は、データの一部をとりだしてハッシュ値を求め、そのハッシュ値を番地とする場所にデータを保存する方法である。しかし、データの一部を取り出すため、異なるデータに対して同じハッシュ値となる場合がある。これをハッシュ衝突とよぶ。この際のデータの保存の方法から、2つの方式がある。

  1. オープンハッシュ法
    ハッシュ表がすでに埋まっていたら、別の保存場所を探す方式。
  2. チェイン法
    同じハッシュ値となるデータをリスト構造で保存する方法。

(2019-01-29) 図が見にくかったので差し替え

トランザクション処理

トランザクション処理

トランザクション処理とは、相互に依存関係にある複数の処理を矛盾なく処理することであり、データベースでは、ACID特性(原子性,一貫性,隔離性,耐久性)がもとめられる。この時、直列化可能(様々な順序で処理できるかもしれないけど、矛盾しない結果となる処理順序が存在すること)であることが求められる。

例えば、以下のように、50万円のデータがあった時、入金処理と出金処理がほぼ同じタイミングで開始された場合、入金処理が終わらないうちに、出金処理が開始されると、以下の例では入金処理が無視されてしまう。

上記のような問題が発生しないようにするには、以下のように、入金処理の時点で他の更新処理を排除するLOCK処理を行い、入金データの書き込みを終えた時点でUNLOCK処理を行う、排他処理が重要となる。

同時実行制御

複数のトランザクションによるデータアクセスで、トランザクション処理を直列化可能にすることを、同時実行制御と呼ぶ。この方式には、2つの方法がある。

  1. ロッキング方式(悲観的制御)
    先行するトランザクションは、データにロックをかけ、他のトランザクションを一時的に排除する方式。後発の処理はアンロックされるまで待たされることことから、これが処理効率の低下となる。

    • ロッキング方式では、ロックをかける大きさ(粒度)が大きいと、待ち処理が発生する可能性が高い。一方で、粒度を小さくしようとすると、ロックの判定が難しくなり効率が低下する可能性も出てくる。
    • ロックの種類
      ロックには、読み出し中心のデータと書き込みで更新のかかるデータでは、ロックのかけ方が異なる。例えば、読み出し中のデータは値が変化しないことから、同じタイミングで読み出し処理が発生しても、待たせる必要は無い。
      この時、データを読み出す際にかける共有ロック(Read Lock)と、書き込みの際にかけるロック占有ロック(Write Lock)がある。
    • 2相ロッキングプロトコル
      トランザクションのロックの操作は、ロックをかける操作が続く成長相と、ロックを解除する操作が続く縮退相に分けて行うことが多い。これを2相ロッキングプロトコルと言う。
  2. 時刻印処理(楽観的制御)
    データの競合の発生頻度が低い場合には、ロッキング方式は待ち処理時間が無駄となるため、同時アクセスを許す方式。ただし、あとで処理の発生した時間(タイムスタンプ)を確認し不都合が判明した場合は、処理の記録をもとにロールバックしてやり直す方式。

デッドロック

複数のトランザクションの実行時には、相互の関係から、処理がうまく進まない場合も発生する。

このような状態をデッドロックと呼び、この状態が発生すると処理が停止してしまうこともある。このような状態は、避けられない場合もあるが、どの処理が何を使うのか、どのデータはどの処理の終了を待っているのかといった資源の状態をグラフ理論で表現したもの資源グラフをで表現し、グラフが巡回するようであれば、デッドロックが発生する。

データベースの物理設計

データベースの物理的設計は、データベースの格納法法や管理方法を決定する。この際には、ディスク容量の見積もりやメモリ量の見積もりが重要となる。

ディスク容量の見積もり

データベースでは、B木(以降で解説予定)などが用いられることが1つのB木のノード(データブロック)の構造をおおまかに示す。各データブロックには、そのブロックを管理するためのページ制御の情報と、実データへのポインタとなるスロット情報と、実データからなる。

実データは、すべてのデータが固定長であれば、そのデータ長とブロック毎のデータ数にページ制御の容量を加えれば良い。しかし、データ長は可変であることが多い。この場合は、データの更新でデータ長が長くなると、その後ろのデータをずらす処理が頻発すると、データ管理の効率が悪い。

そこで、実データの間には、データ長が増えた時の空き領域を設けておく。この比率がPCTFREEと呼ばれ、この領域が埋まった時にのみデータをずらす処理を行う。

また、データベースへのデータの削除を行う場合、データが1つ消える度にデータブロックの構成を変化させると効率が悪く、通常はデータ削除の目印をつけるだけとすることが多い。データ削除で空きがふえた時だけ、データブロックの構成を変えたり、データ追加の際にデータを追加する。この比率は、PCTUSEDと呼ばれる。

このため、ハードディスク容量の見積もりでは、PCTFREE,PCTUSEDを考慮する必要がある。

一般的には、容量を減らす観点であれば、PCTFREEはなるべく小さく、PCTUSEDはなるべく大きい方が望ましいが、データの更新で追加・削除・修正が頻発するのであれば、PCTFREEはある程度大きく、PCTUSEDはある程度小さい方がよい。このため、PCTFREE+PCTUSED < 100 となるようにチューニングすることが多い。

また、実際のデータとは別に、データを高速に検索するためのインデックスファイルが作られるので、この容量も別途考慮が必要となる。

データベースの設計と正規形

適切でないデータベースを例にしながら、更新不整合が発生することを説明する。 (不整合には、修正不整合・挿入不整合・削除不整合がある。) この不整合が発生しないデータベース(表)を作るためには、どうすべきかを解説。

ERモデル

不整合が起こらないようなデータベースとするには、実体関連にモデル化を行う。 実体・関連には、属性(attribute)が付随し、実体を長方形、関連をひし形、属性を楕円で表現する ER図を描く。

学生や教員といった実体は、人という汎化した視点であれば、識別番号と名前の属性で 表現できると意味で、共通である。人を学生という視点で特化した先に、学科名や学年といった 属性を持つと考えられる。こういった汎化階層は、オブジェクト指向と同じ。

実体の中には、他の実体と関連を持って初めて意味を持つ実体もある。 関連先の実体が消えれば、存在自体が無意味になってしまう実体は、弱実体と呼ぶ。

正規形

データベースにおいて、様々な不整合を防ぐために正しい設計が必要であることを 改めて説明し、それには正規形としての条件を満たしている必要があることを説明する。

第一正規形は、すべての要素が原子値である条件を満たせばいい。 要素の中が複数の項目であったり表形式のデータがあると、 表構造のリレーショナルデータベースにはできない。

キーの説明:超キー(スーパーキー)とは、データベースで1つのデータを 選び出すために必要なデータ項目であり、複数の項目で1データを指定 できる場合もある。

候補キーとは、必要最小限の項目となっているものを指す。 1項目が抜けても選別できなくなるようであれば、候補キーとは言わない。 主キーとは、候補キーのなかで管理の都合上便利なもの。

データ項目の値が決まると、他のデータ項目が自動的に決まるものは、 従属関係があるという。

第1正規化 第2正規化

第二正規形は、部分従属がなく、すべての非キーデータ項目が、候補キーに 完全従属する場合をいう。

完全従属とは、候補キーを構成する全てのデータ項目に、非キーデータ項目が従属していること。 部分従属とは、候補キーを構成するデータ項目の一部のデータ項目に、非キー項目が従属していること。


この例において、単価は商品が決まれば自動的に求まる情報。 (単価が日々変化することはないという条件で…) これは、部分従属となる。

推移従属性とは、データ項目でA→B→Cと、次々と値が求められる関係を指す。 このなかで、第三正規形とは、 候補キー以外の非キーデータ項目は、候補キーに完全従属し、 かつどの候補キーにも推移従属しない関係をいう。

第3正規化

上記の例では、単価と個数が決まれば、金額が求まる推移従属の関係が含まれている。

おまけ:BC正規形,第4,5正規形

この他にも、 さらに非キーからキーに関数従属性がある場合にそれを取り除く、 ボイスコッド正規形(BC正規化)。 「対称性のある多値従属性(キーを決めると複数データが該当)」を分解して得られる第4正規形や、 「元になるテーブルの結合従属性を維持して分解することにより得られる第5正規形などがある。

データベースの設計とER図

データベースの設計

リレーショナル・データベースでは、データは表形式であればなんでも良い訳ではない。

例えば、学生の成績データが以下のような構造であった場合、

 ID   | name   | grade | subject  | teacher
------+--------+-------+----------+---------
20101 | aoyama |   1   | database | saitoh
20101 | aoyama |   1   | software | murata
20002 | suzuki |   2   | database | saitoh
20002 | suzuki |   2   | compiler | nomura
30203 | yamada |   3   | media    | ogoshi
  • 修正不整合: 授業担当が saitoh → sasaki のように変更になったら、複数のテーブルを修正しなければならない。
  • 挿入不整合: 新しい科目 internet を追加したいけど、受講学生が決まらないとデータを挿入できない。
  • 削除不整合: yamada が受講を取りやめたら、科目 media も消えてしまう。

これらを考慮すると、以下のような3つの表で設計するべきである。

学生                      受講            科目
ID    | name   | grade    ID   | SubID   SubID | subject | teacher
------+--------+-------  ------+-------  ------+----------+--------
20101 | aoyama | 1       20101 | 1001     1001 | database | saitoh → sasaki
20002 | suzuki | 2       20101 | 1002     1002 | software | murata
30203 | yamada | 3       20002 | 1001     1003 | compiler | nomura
                         20002 | 1003     1004 | media    | ogoshi
                  消す→ 30203 | 1004     1005 | internet | foobar → 追加

データベースの設計では、(1)概念設計、(2)論理設計、(3)物理設計が行われる。

  • 概念設計:概念スキーマの決定(実体・関係モデルを使う)。上記の受講データベースの設計例
  • 論理設計:論理スキーマの決定。関係データベースで実装?ほかのデータベース?
  • 物理設計:物理スキーマの決定。データの格納方法や管理方法を決める。

実体関連モデル(ERモデル)

データベース設計では、実体関連モデル(ERモデル:Entity-Relation model)が使われる。 実体とは、モデル化しようとする対象で独立した存在となれるもの。 実体が持つ色々な特性は属性と呼ばれる。 属性の取りうる値の集合を定義域、同一種類の実体の集まりを実体集合と呼ぶ。 関連とは、実体同士の相互関係をモデル化したもの。

実体関連図(ER図)では、実体を長方形、関連をひし形、属性を楕円で表現する。 属性で、キーとなるものには下線をつけて表す。

ER図で調べると、実際にはもっと細かい規定で表現が行われている。 参考:IDEF1X表記とIE表記

GROUP BY-HAVINGとCREATE VIEW

先週に引き続き、2つのSQLとそれと同じ処理のプログラム作成の課題に取り組む。

演習だけでは進度が少ないので、SQL で説明できなかった、GROUP BY-HAVING と CREATE VIEW の説明

GROUP BY HAVING

GROUP BY-HAVING では、指定されたカラムについて同じ値を持つレコードがグループ化される。SELECT 文に指定される集約関数は、グループごとに適用される。HAVING は、ある条件を満たす特定のグループを選択するための条件で、WHERE と違い、集約関数が使える。

SELECT SG.商品番号, SUM(SG.在庫量)
  FROM SG
  GROUP BY SG.商品番号 HAVING SUM(SG.在庫量) >= 500 ;

このSQLを実行すると、SG のテーブルから、商品番号が同じものだけをあつめてグループ化される。そのグループごとに在庫量のデータの合計SUMを集約し、500以上のデータが出力される。

CREATE VIEW

今までで述べてきたSQLでは、実際のテーブルを対象に、結合・選択・射影を行う命令であり、これは概念スキーマと呼ばれる、対象となるデータベース全体を理解したプログラマによって扱われる。

しかし、プログラムの分業化を行い、例えば結果の表示だけを行うプログラマにしてみれば、全てのデータベースの表を考えながらプログラムを作るのは面倒である。そこで、結合・選択・射影の演算の結果で、わかりやすい単純な表となったものであれば、初心者のデータベースプログラマでも簡単に結果を扱うことができる。このような外部スキーマを構成するための機能が、ビューテーブルである。

-- 優良業者テーブルを作る --
CREATE VIEW 優良業者 ( 業者番号 , 優良度 , 所在 )
    AS SELECT S.業者番号, S.優良度, S.所在
         FROM S
         WHERE S.優良度 >= 15 ;

-- 優良業者テーブルから情報を探す --
SELECT *
  FROM 優良業者
  WHERE 優良業者.所在 = '福井' ;

ビューテーブルに対する SQL を実行すると、システムによっては予め実行しておいた CREATE VIEW の AS 以下の SQL の実行結果をキャッシュしておいて処理を行うかもしれない。システムによっては SQL の命令を 副クエリを組合せた SQL に変換し、処理を行うかもしれない。しかし、応用プログラマであれば、その SQL がどのように実行されるかは意識する必要はほとんど無いであろう。

ただし、ビューテーブルに対する 挿入・更新・削除といった演算を行うと、データによっては不整合が発生することもあるので注意が必要である。

SQLで集約関数と集合計算

特殊な条件演算子

WHERE 節の中で使える特殊な条件演算子を紹介する。

... IN ...
   WHERE S.業者番号 IN ( 'S1' , 'S4' ) ;
... BETWEEN A AND B 
   WHERE S.優良度 BETWEEN 50 AND 100 ;
... LIKE ...
   WHERE S.業者名 LIKE 'A_C社' ;   _ は任意の1文字 ABC社 ADC社
   WHERE S.業者名 LIKE 'A%社' ;    % は任意の0~N文字 A社, AA社 ABC社
... IS NULL
   WHERE S.業者名 IS NULL

集約関数

集約関数は、SQL の SELECT の射影部分で使える関数で、出力対象となった項目に対して、COUNT(),SUM(),AVG()といった計算を行うもの。

COUNT() - 項目の数
SUM() -   項目の合計
AVG() -   項目の平均
MAX() -   項目の最大値
MIN() -   項目の最低値

SELECT COUNT(SG.業者番号) FROM SG WHERE SG.優良度 > 100 ;

集合計算

複数の SQL の結果に対し、集合和, 集合積, 集合差などの処理を行う。

... UNION ...  集合和
... EXPECT ... 集合差
... INTERSECT ... 集合積

SELECT S.業者名 FROM S WHERE S.所在 = '福井'
UNION
SELECT S.業者名 FROM S WHERE S.所在 = '東京'

SQLと結合

SQLの基礎

前回の講義で、データベースでは、記録されているデータの読み書きは、SQL で行われ、射影・結合・選択を表す処理で構成されることを示した。SQL の機能を理解するために、同じ処理を C 言語で書いたらどうなるのかを示す。

SELECT S.業者番号         -- 必要とされるデータを抽出する射影 --
  FROM S                 -- 複数のテーブルを組合せる結合 --
  WHERE S.優良度 >= 20 ;  -- 対象となるデータを選び出す選択 --

// 配列の個数を求める #define 文
#define sizeofarray(ARY) (sizeof(ARY) / sizeof(ARY[0]))
// C言語なら... S のデータを構造体宣言で書いてみる。
struct Table_S {
   char 業者番号[ 6 ] ;
   char 業者名[ 22 ] ;
   int  優良度 ;
   char 所在[ 16 ] ;
} S[] = {
   { "S1" , "ABC社" , 20 , "福井" } ,
   :
} ;

// 結合
for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
   // 選択
   if ( S[i].優良度 >= 20 )
      // 射影
      printf( "%d¥n" , S[i].業者番号 ) ;
}

Sは、テーブル名であり、文脈上対象テーブルが明らかな場合、フィールド名の前の テーブルは省略可能である。

SELECT 業者番号 FROM S WHERE 優良度 >= 20 ;

WHERE 節で記述できる条件式では、= , <>(not equal) , < , > , <= , >= の比較演算子が使える。

直積と結合処理

ここで、SQLの最も便利な機能は、直積による結合処理。複数の表を組み合わせる処理。単純な表形式の関係データベースで、複雑なデータを表現できる基本機能となっている。

SELECT SG.商品番号 , S.所在
  FROM S , SG
  WHERE SG.業者番号 = S.業者番号

上記の様に FROM 節に複数のテーブルを書くと、それぞれのテーブルの直積(要素の全ての組み合わせ)を生成する処理が行われる。この機能が結合となる。しかし、これだけでは意味がないので、通常は外部キーが一致するレコードでのみ処理を行うように、WHERE SG.業者番号 = S.業者番号 のような選択を記載する。最後に、結果として欲しいデータを抽出する射影を記載する。

// C言語なら
struct Table_S {
   char 業者番号[ 6 ] ;
   char 業者名[ 22 ] ;
   int  優良度 ;
   char 所在[ 16 ] ;
} S[] = {
   { "S1" , "ABC社" , 20 , "福井" } ,
   :
} ;
struct Table_SG {
   char 業者番号[ 6 ] ;
   char 商品番号[ 6 ] ;
   int  在庫量 ;
} = SG[] {
   { "S1" , "G1" , 300 } ,
   :
} ;

// FROM S
for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
   // FROM SG
   for( int j = 0 ; j < sizeofarray( SG ) ; j++ ) {
      // WHERE S.業者番号 = SG.業者番号
      if ( strcmp( S[i].業者番号 , SG[j].業者番号 ) == 0 ) {
         // SELECT SG.商品番号 , S.所在
         printf( "%s %s¥n" , SG[j].商品番号 , S[i].所在 ) ;
      }
   }
}

(1) i,jの2重forループが、FROM節の結合に相当し、(2) ループ内のif文がWHERE節の選択に相当し、(3) printfの表示内容が射影に相当している。

射影の処理では、データの一部分を抽出することから、1件の抽出レコードが同じになることもある。この際の重複したデータを1つにまとめる場合には、DISTINCT を指定する。

SELECT DISTINCT SG.商品番号, S.所在
   FROM S, SG
   WHERE SG.業者番号 = S.業者番号 ;

上記のプログラムでは、データの検索は単純 for ループで記載しているが、内部で HASH などが使われていると、昇順に処理が行われない場合も多い。出力されるデータの順序を指定したい場合には、ORDER BY … ASC (or DESC) を用いる

SELECT SG.商品番号, S.所在
   FROM S, SG
   WHERE SG.業者番号 = S.業者番号
   ORDER BY S.所在 ASC ;        -- ASC:昇順 , DESC:降順 --

表型のデータと串刺し

FROM に記載する直積のための結合では、2つ以上のテーブルを指定しても良い。

SELECT S.業者名, G.商品名, SG.在庫量
  FROM S, G, SG
   WHERE  S.業者番号 = SG.業者番号  -- 外部キー業者番号の対応付け --
     AND  SG.商品番号 = G.商品番号  -- 外部キー商品番号の対応付け --

// 上記の処理をC言語で書いたら

struct Table_G {
   char 商品番号[ 6 ] ;
   char 商品名[ 22 ] ;
   char 色[ 4 ] ;
   int  価格 ;
   char 所在[ 12 ] ;
} = G[] = {
   { "G1" , "赤鉛筆" , "青" , 120 , "福井" } ,
   :
} ;

// FROM S (結合)
for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
   // FROM G (結合)
   for( int j = 0 ; j < sizeofarray( G ) ; j++ ) {
      // FROM SG (結合)
      for( int k = 0 ; k < sizeofarray( SG ) ; k++ ) {
         // WHERE S.業者番号 = SG.業者番号
         //   AND SG.商品番号 = G.商品番号 (選択)
         if ( strcmp( S[i].業者番号 , SG[k].業者番号 ) == 0
           && strcmp( SG[k].商品番号 , G[j].商品番号 ) == 0 ) {
            // 使用するフィールドを出力 (射影)
            printf( "%s %s %d\n" ,
                    S[i].業者名 , G[j].商品名 , SG[k].在庫量 ) ;
         }
      }
   }
}

ここで結合と選択で実行している内容は、外部キーである業者番号を S から探す、商品番号を G から探している。この、外部キー対応しているものを探すという視点で、上記 C 言語のプログラムを書き換えると、以下のように表せる。

// FROM SG
for( int k = 0 ; k < sizeofarray( SG ) ; k++ ) {
   // 外部キー SG.業者番号に対応するものを S から探す
   for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
      if ( strcmp( S[i].業者番号 , SG[k].業者番号 ) == 0 ) {
         // 外部キー SG.商品番号に対応するものを G から探す
         for( int j = 0 ; j < sizeofarray( G ) ; j++ ) {
            if ( strcmp(SG[k].商品番号,G[j].商品番号) == 0 ) {
               printf( "%s %s %d\n" ,
                       S[i].業者名,G[j].商品名,SG[k].在庫量 ) ;
            }
         }
      }
   }
}

このような、複数の表の実体と関係を対応付けた検索を、データベースの専門の人は「データを串刺しにする」という言い方をすることも多い。

また、SQL では、このようなイメージの繰り返し処理を、数行で分かりやすく記述できている。このプログラム例では、キーに対応するものを単純 for ループで説明しているが、SQL ではプライマリキーなら、B木やハッシュなどを用いた検索が行われるが、SQLの記述するときにはあまり考えなくて良い。

SQLの副問い合せ

前節の結合処理は時として効率が悪い。このような場合は、副問い合わせを用いる場合も多い。

SELECT S.業者名, S.所在
  FROM S
  WHERE S.業者番号 IN
     ( SELECT SG.業者番号
         FROM SG
         WHERE SG.商品番号 = 'G2'
           AND SG.在庫量 >= 200 ) ;

まず、『◯ IN { … }』 の比較演算子は、◯が{…}の中に含まれていれば、真となる。また、SQLの中の (…) の中が副問い合わせである。

この SQL では、副問い合わせの内部には、テーブル S に関係する要素が含まれない。この場合、副問い合わせ(商品番号がG2で在庫量が200以上)は先に実行される。

{(S1,G2,200),(S2,G2,400),(S3,G2,200),(S4,G2,200)}が該当し、その業者番号の{S1,S2,S3,S4}が副問い合わせの結果となる。最終的に SELECT … FROM S WHERE S.業者番号 IN {‘S1′,’S2′,’S3′,’S4’} を実行する。

相関副問い合わせ

SELECT G.商品名, G.色, G.価格
  FROM G
  WHERE 'S4' IN 
     ( SELECT SG.業者番号
         FROM SG
         WHERE SG.商品番号 = G.商品番号 ) ;

この副問い合わせでは、内部に G.商品番号 が含まれており、単純に()内を先に実行することはできない。こういった副問い合わせは、相関副問い合わせと呼ばれる。

処理は、Gのそれぞれの要素毎に、副問い合わせを実行し、その結果を使って WHERE節の判定を行う。WHERE節の選択で残った結果について、射影で商品名,色,価格が抽出される。

// 概念の説明用に、C言語風とSQL風を混在して記載する
for( int i = 0 ; i < sizeofarray( G ) ; i++ ) {
   SELECT SG.業者番号 FROM SG
    WHERE SG.商品番号 = G[i].商品番号 を実行
   if ( WHERE 'S4' IN 副query の結果が真なら ) {
      printf( ... ) ;
   }
}
// 全てのG 副queryの結果     WHERE 射影
// G1 ->  {S1,S2}
// G2 ->  {S1,S2,S3,S4} -> ◯ -> (ノート,青,170)
// G3 ->  {S1}
// G4 ->  {S1,S4}       -> ◯ -> (消しゴム,白,50)
// G5 ->  {S1,S4}       -> ◯ -> (筆箱,青,300)
// G6 ->  {S1}

SQLの基本

先週の、関係データベースの導入説明を終えて、実際のSQLの説明。

キー

表形式のテーブルの中の各レコードを一意的に指定できるカラムはキーと呼ばれる。

キーは単独であるとは限らず、成績の評価結果であれば、学生科目をキーとして成績というカラムが1つに絞られる場合もある。

キーのうち、データを一意に識別するためのキーは、プライマリーキーと呼ばれる。以下の例であれば、uID,sID がプライマリーキーである。一方、成績のテーブルでは、uID, sID は、学生,科目のキーとなっている。このようなキーは外部キーと呼ばれる。点数pointは、uID, sID により一意に決まるが、例えば成績の uID に、学生のテーブルに存在しないものが指定されてはいけない。こういった制約は外部キー制約と呼ばれる。

SQLの命令

SQL で使われる命令は、以下のものに分類される。

  • データ定義言語 – CREATE, DROP, ALTER 等
  • データ操作言語 – INSERT, UPDATE, DELETE, SELECT 等
  • データ制御言語 – GRANT, REVOKE 等 (その他トランザクション制御命令など)

create user

データベースを扱う際の create user 文は、DDL(Data Definition Language)で行う。

CREATE USER ユーザ名
    IDENTIFIED BY "パスワード"

grant

テーブルに対する権限を与える命令。

GRANT システム権限 TO ユーザ名
   データベースシステム全体に関わる権限をユーザに与える。
   (例) GRANT execute ON admin.my_package TO saitoh
GRANT オブジェクト権限 ON オブジェクト名 TO ユーザ名
   作られたテーブルなどのオブジェクトに関する権限を与える。
   (例) GRANT select,update,delete,insert ON admin.my_table TO saitoh
REVOKE オブジェクト権限 ON オブジェクト名 TO ユーザ名
   オブジェクトへの権限を剥奪する。

create table

実際にテーブルを宣言する命令。構造体の宣言みたいなものと捉えると分かりやすい。

CREATE TABLE テーブル名
   ( 要素名1  型 , 要素名2 型 ... ) ;
   PRIMARY KEY 制約
   型の後ろに"PRIMARY KEY"をつける、
   もしくは、要素列の最後に、PRIMARY KEY(要素名,...)をつける。
   これによりKEYに指定した物は、重複した値を格納できない。

型には、以下の様なものがある。(Oracle)
   CHAR( size)  : 固定長文字列 / NCHAR国際文字
   VARCHAR2( size ) : 可変長文字列 / NVARCHAR2...
   NUMBER(桁) :指定 桁数を扱える数
   BINARY_FLOAT / BINARY_DOUBLE : 浮動小数点(float / double)
   DATE : 日付(年月日時分秒)
   SQLiteでの型
   INTEGER : int型
   REAL : float/double型
   TEXT : 可変長文字列型
   BLOB : 大きいバイナリデータ

DROP TABLE テーブル名
   テーブルを削除する命令

insert,update,delete

指定したテーブルに新しいデータを登録,更新,削除する命令

INSERT INTO テーブル名 ( 要素名,... ) VALUES ( 値,... ) ;
   要素に対応する値をそれぞれ代入する。
UPDATE テーブル名 SET 要素名=値 WHERE 条件
   指定した条件の列の値を更新する。
DELETE FROM テーブル名 WHERE 条件
   指定した条件の列を削除する。

select

データ問い合わせは、select文を用いる、 select文は、(1)必要なカラムを指定する射影、(2)指定条件にあうレコードを指定する選択、 (3)複数のテーブルの直積を処理する結合から構成される。

SELECT 射影 FROM 結合 WHERE 選択
   (例) SELECT S.業者番号 FROM S WHERE S.優良度 > 30 ;

理解確認

  • キー・プライマリキー・外部キーについて説明せよ。
  • 上記説明中の、科目テーブルにふさわしい create table 文を示せ。
  • select文における、射影,結合,選択について説明せよ。