ホーム » スタッフ » 斉藤徹 » 講義録 » データベース

データベース」カテゴリーアーカイブ

2025年1月
 1234
567891011
12131415161718
19202122232425
262728293031  

検索・リンク

データベースの物理設計

前半はデータベースの物理設計の話を行う。後半は、レポート課題の時間とする。

データベースの物理設計

データベースの物理的設計は、データベースの格納法法や管理方法を決定する。この際には、ディスク容量の見積もりやメモリ量の見積もりが重要となる。

ディスク容量の見積もり

データベースでは、B木(以降で解説予定)などが用いられることが1つのB木のノード(データブロック)の構造をおおまかに示す。各データブロックには、そのブロックを管理するためのページ制御の情報と、実データへのポインタとなるスロット情報と、実データからなる。

実データは、すべてのデータが固定長であれば、そのデータ長とブロック毎のデータ数にページ制御の容量を加えれば良い。しかし、データ長は可変であることが多い。この場合は、データの更新でデータ長が長くなると、その後ろのデータをずらす処理が頻発すると、データ管理の効率が悪い。

そこで、実データの間には、データ長が増えた時の空き領域を設けておく。この比率がPCTFREEと呼ばれ、この領域が埋まった時にのみデータをずらす処理を行う。

また、データベースへのデータの削除を行う場合、データが1つ消える度にデータブロックの構成を変化させると効率が悪く、通常はデータ削除の目印をつけるだけとすることが多い。データ削除で空きがふえた時だけ、データブロックの構成を変えたり、データ追加の際にデータを追加する。この比率は、PCTUSEDと呼ばれる。

-- PCTFREE,PCTUSED の使い方の例 --
CREATE TABLE Person (
  id      INTEGER NOT NULL PRIMARY KEY ,
  name    VARCHAR( 20 ) ,
  address VARCHAR( 30 ) ,
)
PCTFREE 10
PCTUSED 40 ; -- PCTFREE+PCTUSED < 100 --

このため、ハードディスク容量の見積もりでは、PCTFREE,PCTUSEDを考慮する必要がある。

一般的には、容量を減らす観点であれば、PCTFREEはなるべく小さく、PCTUSEDはなるべく大きい方が望ましいが、データの更新で追加・削除・修正が頻発するのであれば、PCTFREEはある程度大きく、PCTUSEDはある程度小さい方がよい。このため、PCTFREE+PCTUSED < 100 となるようにチューニングすることが多い

例えば、ページサイズが4096バイト、ページ制御情報が32バイト、スロット制御情報が1データあたり4バイト、PCTFREEが30%、平均の1件あたりのデータ長が256バイトで、100000件を保存するとする。この場合、1ページ内でデータ用に使用できる領域は、(4096-32)✕(1-0.3) = 2844バイトとなる。この場合、1ページに保存できるデータは 2844÷(256+4) = 10.9 となり、最大で10件となる。このため、データを保存するために必要なデータ領域は 4096×(100000/10) = 40.9MB となる。単純にデータを覚えるだけであれば、本来なら 256×100000=25.6MB であるため、実際には1.6倍のデータ領域が必要であることが分かる。(教科書の説明より…)

また、実際のデータとは別に、データを高速に検索するためのインデックスファイルが作られるので、この容量も別途考慮が必要となる。

補足:残り予定:トランザクション処理, 内部構造, テスト前レポート課題

データべースの設計と正規形

テスト問題の返却および解答の説明を行い、その後、データベースの設計において、重要な正規形についての説明の導入。

正規形

データベースにおいて、様々な不整合を防ぐために正しい設計が必要であることを 改めて説明し、それには正規形としての条件を満たしている必要があることを説明する。一般的に不整合が発生しないためには、以下の第1正規形第2正規形第3正規形を満たすように表を分ければよい。

第一正規形は、すべての要素が原子値である条件を満たせばいい。 要素の中が複数の項目であったり表形式のデータがあると、 表構造のリレーショナルデータベースにはできない。


キーの説明超キー(スーパーキー)とは、データベースで1つのデータを 選び出すために必要なデータ項目であり、複数の項目で1データを指定 できる場合もある。

候補キーとは、必要最小限の項目となっているものを指す。 1項目が抜けても選別できなくなるようであれば、候補キーとは言わない。 主キーとは、候補キーのなかで管理の都合上便利なもの。

データ項目の値が決まると、他のデータ項目が自動的に決まるものは、 従属関係があるという。

第1正規化 第2正規化

第二正規形は、部分従属がなく、すべての非キーデータ項目が、候補キーに 完全従属する場合をいう。

  • 完全従属とは、候補キーを構成する全てのデータ項目に、非キーデータ項目が従属していること。
  • 部分従属とは、候補キーを構成するデータ項目の一部のデータ項目に、非キー項目が従属していること。

この例において、単価は商品が決まれば自動的に求まる情報。 (単価が日々変化することはないという条件で…) これは、部分従属となる。他に部分従属となっている属性は何か?

  • 推移従属性とは、データ項目でA→B→Cと、次々と値が求められる関係を指す。

第三正規形とは、 候補キー以外の非キーデータ項目は、候補キーに完全従属し、 かつどの候補キーにも推移従属しない関係をいう。

第3正規化

上記の例では、単価と個数が決まれば、金額が求まる推移従属の関係が含まれている。

おまけ:BC正規形,第4,5正規形

この他にも、 さらに「非キーからキーに関数従属性がある場合にそれを取り除く」、 ボイスコッド正規形(BC正規化)。 「対称性のある多値従属性(キーを決めると複数データが該当)を分解」して得られる第4正規形や、 「元になるテーブルの結合従属性を維持して分解」することにより得られる第5正規形などがある。

トップダウン設計・ボトムアップ設計

データベースの設計にあたって、実際の設計手順の説明を行う。

トップダウン設計では、対象業務を記述し、その中から名詞となっている実体を抽出する。 さらに動詞や形容詞のように記載されている関連を抽出する。 抽出した実体・関連では、あいまいであったり冗長であったりするので、整理したうえで、 その実体・関連をER図に表す。

ボトムアップ設計では、対象業務で実際に使われている入力帳票や結果の出力などを 見ながら、第1正規形を満たすように表を作っていく作業からおこなう。

トップダウン設計やボトムアップ設計で、 ER図や第一正規形を満たすような表が出来上がったら、 その属性の中で従属性を確認しながら、第2正規形・第3正規形へと整理していく。

データベース後半課題

データベース後半の課題は「卒業研究の対象をデータベースとして設計」とする。

情報系の卒研テーマであれば、処理対象のデータの中にはデータベースで管理するのがふさわしい対象について設計せよ。実験系の卒研テーマであれば、実験結果の表をデータベースで管理するとした場合の設計を行うこと。どちらでもない卒研で、卒研のテーマの中にデータベース化すべき対象が無い場合は、身の回りの帳票(例えばコンビニのレシートなど)をデータベース化することを検討すること。

レポートで記載する内容は、以下の通りとする。

  • 卒業研究におけるデータベース化する対象の説明
  • データベースをトップダウン設計する際の
    • 実体と関連を抽出するまでの説明
    • 正規化を行う経過の説明
    • 上記を踏まえたトップダウン設計でのER図
  • データベースをボトムアップ設計する際の
    • 対象とする帳票に相当するデータの一例と説明
    • レベル分けや正規化を行う経過の説明
    • 上記を踏まえたボトムアップ設計でのER図
  • 考察
    • トップダウン設計とボトムアップ設計に違いがあれば、設計の見直しの過程の説明
    • 両設計方法から分かったこと

ERモデル

データベースの設計

リレーショナル・データベースでは、データは表形式であればなんでも良い訳ではない。

例えば、学生の成績データが以下のような1つのテーブルで構成されるデータだった場合、

ID name grade subject teacher
20101 青山 1 データベース 斉藤
20101 青山 1 ソフトウェア工学 村田
20002 鈴木 2 データベース 斉藤
20002 鈴木 2 コンパイラ 西
30203 山田 3 情報メディア 小松
× × × 情報ネットワーク 森田
  • 修正不整合: 授業担当が 斉藤高久 のように変更になったら、複数のテーブルを修正しなければならない。大量のレコード修正は、時間がかかるし、その途中にシステムダウンしたらデータの整合性に問題が発生するかも。
  • 挿入不整合: 新しい科目 情報ネットワーク を追加したいけど、受講学生が決まらないとデータを挿入できない。
  • 削除不整合: 山田 が受講を取りやめたら、科目 情報メディア も消えてしまう。

これらを考慮すると、以下のような3つの表で設計するべきである。

■学生(実体)

ID name grade
20101 青山 1
20002 鈴木 2
30203 山田 3
■受講(関係)

ID (FK) SubID (FK)
20101 1001
20101 1002
20002 1001
20002 1003
30203 1004

30203を消しても情報メディア
の科目のデータは残る
FK=外部キー

■科目(実体)

SubID Subject teacher
1001 データベース 斉藤
1002 ソフトウェア工学 村田
1003 コンパイラ 西
1004 情報メディア 小松
1005 情報ネットワーク 森田

斉藤高久に変更したら
複数のレコードを要修正。

情報ネットワークを追加しても問題なし

データベースの設計では、(1)概念設計、(2)論理設計、(3)物理設計が行われる。

  • 概念設計:概念スキーマの決定(実体・関係モデルを使う)。上記の受講データベースの設計例
  • 論理設計:論理スキーマの決定。関係データベースで実装?ほかのデータベース?
  • 物理設計:物理スキーマの決定。データの格納方法や管理方法を決める。

実体関連モデル(ERモデル)

データベース設計では、実体関連モデル(ERモデル:Entity-Relation model)が使われる。 実体とは、モデル化しようとする対象で独立した存在となれるもの。 実体が持つ色々な特性は属性と呼ばれる。 属性の取りうる値の集合を定義域、同一種類の実体の集まりを実体集合と呼ぶ。 関連とは、実体同士の相互関係をモデル化したもの

実体関連図(ER図)では、実体を長方形、関連をひし形、属性を楕円で表現する。 属性で、キーとなるものには下線をつけて表す。

ER図で調べると、実際にはもっと細かい規定で表現が行われている。 参考:IDEF1X表記とIE表記

GROUP BY HAVINGとビューテーブル

GROUP BY HAVING

GROUP BY-HAVING では、指定されたカラムについて同じ値を持つレコードがグループ化される。SELECT 文に指定される集約関数は、グループごとに適用される。HAVING は、ある条件を満たす特定のグループを選択するための条件で、WHERE と違い、集約関数が使える。

SELECT SG.商品番号, SUM(SG.在庫量)
  FROM SG
  GROUP BY SG.商品番号 HAVING SUM(SG.在庫量) >= 500 ;

このSQLを実行すると、SG のテーブルから、商品番号が同じものだけをあつめてグループ化される。そのグループごとに在庫量のデータの合計SUMを集約し、合計が500以上のデータが出力される。

業者番号 商品番号 在庫量
S1 G1 300
S1 G2 200
S1 G3 400
S1 G4 200
S1 G5 100
S1 G6 100
S2 G1 300
S2 G2 400
S3 G2 200
S4 G2 200
S4 G4 300
S4 G5 400

※業者番号順
 ⇒
業者番号 商品番号 在庫量 HAVING条件
SUM(SG.在庫量)
S1 G1 300 600
(≧500)
S2 G1 300
S2 G2 400 1000
(≧500)
S3 G2 200
S1 G2 200
S4 G2 200
S1 G3 400 400
S1 G4 200 500
(≧500)
S4 G4 300
S1 G5 100 500
(≧500)
S4 G5 400
S1 G6 100 100

※商品番号でグループ化
 ⇒
商品番号 SUM(SG.在庫量)
G1 600
G2 1000
G4 500
G5 500

※抽出結果

CREATE VIEW

今までで述べてきたSQLでは、実際のテーブルを対象に、結合・選択・射影を行う命令であり、これは概念スキーマと呼ばれる、対象となるデータベース全体を理解したプログラマによって扱われる。

しかし、プログラムの分業化を行い、例えば結果の表示だけを行うプログラマにしてみれば、全てのデータベースの表を考えながらプログラムを作るのは面倒である。そこで、結合・選択・射影の演算の結果で、わかりやすい単純な表となったものであれば、初心者のデータベースプログラマでも簡単に結果を扱うことができる。このような外部スキーマを構成するための機能が、ビューテーブルである。

-- 優良業者テーブルを作る --
CREATE VIEW 優良業者 ( 業者番号 , 優良度 , 所在 )
    AS SELECT S.業者番号, S.優良度, S.所在
         FROM S
         WHERE S.優良度 >= 15 ;

-- 優良業者テーブルから情報を探す --
SELECT *
  FROM 優良業者
  WHERE 優良業者.所在 = '福井' ;

-- 文房具データベース --
CREATE VIEW 文房具データベース ( 業者名 , 商品名 , 在庫量 )
    AS SELECT S.業者名, G.商品名, SG.在庫量
         FROM S, SG, G
         WHERE S.業者番号 = SG.業者番号 and SG.商品番号 = G.商品番号 ;

-- VIEWの確認 --
SELECT * FROM 文房具データベース ; -- 串刺ししたデータベースに見える

  ----- 実行結果 -----
  業者名 商品名  在庫量
  ABC社  赤鉛筆  300
  ABC社  ノート  200
  ABC社  消しゴム 400
  ABC社  消しゴム 200
  ABC社  筆箱   100
  ABC社  バインダ 100
  LMN社  赤鉛筆  300
  LMN社  ノート  400
  PQR社  ノート  200
  STU社  ノート  200
  STU社  消しゴム 300
  STU社  筆箱   400

ビューテーブルに対する SQL を実行すると、システムによっては予め実行しておいた CREATE VIEW の AS 以下の SQL の実行結果をキャッシュしておいて処理を行うかもしれない。システムによっては SQL の命令を 副クエリを組合せた SQL に変換し、処理を行うかもしれない。しかし、応用プログラマであれば、その SQL がどのように実行されるかは意識する必要はほとんど無いであろう。

ただし、ビューテーブルに対する 挿入・更新・削除といった演算を行うと、データによっては不整合が発生することもあるので注意が必要である。

SQL言語

教科書の流れに沿ってSQLの言語について、再掲

  • スキーマ定義
    • CREATE – 実テーブル、ビューテーブルの定義
    • GRANT – 権限の定義
  • スキーマ操作
    • DROP – 実テーブル、ビューテーブルの削除
    • REVOKE – 権限の削除
    • ALTER – テーブルの変更
    • ADD – カラムの追加
  • データ操作
    • SELECT, INSERT, DELETE, UPDATE – レコードの検索、追加・削除・更新
    • トランザクション処理
      • データベースでは、原子性などを満たすためにデータベースへの更新履歴を保持している。これらの更新履歴をデータベースに反映させ確定する処理がトランザクション処理。
      • COMMIT – データベースの更新処理を確定
      • ROLLBACK – データベースの更新処理を取り消す

ホスト言語とのインタフェースとSQLインジェクション

プログラミング言語によっては、その言語の中でSQLを使うために「組み込み型のSQL」が使えるものがある。
(COBOL,PL/Iなど)

動的メモリ管理が得意な最近のPythonやPHPなどの言語であれば、データベース参照の関数が利用できる。

SQLインジェクション

例えば、PHPでは、SQLからデータを取り出す処理は、以下のようになる。

// 検索するユーザID
$id = "t-saitoh" ;
$pdo = new PDO( '...' ) ; // データベースに接続する関数
$sql = "select name from usertable where id='$id'" ;
$query = $pdo->prepare( $sql ) ;

// 取り出せたデータに関する処理 id がプライマリキーならforeachは1回ループのはず
foreach( $query->fetcAll() as $name ) {
   // $name に取り出した名前が入っている
} 

しかし、$id の部分を、Web の入力フォームなどの値であれば、名前以外の情報が入力される場合もある。

この際に、「 $id = ” ‘ or 1==1 — ‘ ” 」といった値が入っていた場合、SQLで実行される命令は、

$id = "' or 1==1 --'" の場合
$sql = "select name from usertable where id='' or 1==1 -- ''" ;

となってしまい、本来なら1人のデータを抽出する select 命令が、全テーブルに対して該当してしまい、情報漏洩が発生するかもしれない。

「 $id = “‘; drop usertable ; — ‘” 」であれば、usertable が消されてしまい、システムが動かなくなる(サービスを提供できなくする攻撃 = DoS攻撃 – Denial-of-service attack)ことも考えられる。

他にもSQLインジェクションを使う技がある。こちらの CTF の WriteUp などが参考になる。

こういった攻撃手法は、SQLに本来の意図ではないSQL命令を紛れ込ませる攻撃ということで、SQLインジェクションという。

SQLインジェクションで発生した有名な事件では、以下のようなものがある。

対策としては、ユーザが入力したデータを用いて SQL 命令を実行する場合は、ユーザ入力をSQLとして悪用されないように、シングルクオートなどをエスケープするなどの処理が必要となる。さまざまな手法があるので、SQL無効化の専用関数を用いるべき。

また、データベースシステムは、ネットワーク経由でSQLによる処理を行うが、データベースサーバ自体がインターネットに接続されていて、パスワード攻撃によりデータベース本体に不正アクセスが行われる場合もある。一般的なデータベースを用いたシステムは、フロントエンドのWebサーバ、スレーブDBサーバ、マスタDBサーバの三層構成をとることが多いが、バックエンドのデータベースは、インターネットから隔離しフロントエンドのWebサーバのみ接続できるようにするのが一般的である。

データベースに接続する場合はパスワードにより利用者を限定することができるが、データベースシステム自体がインターネットに接続されていると、パスワード総当たり攻撃(ブルートフォース攻撃)や、パスワードスプレー攻撃(総当たり攻撃は、短時間でパスワード失敗が多発するのでシステムで接続拒否するのが一般的。これを回避するために時間をかけて総当たり攻撃をする手法)により、情報漏洩が発生する。

集約関数と副問い合わせ

特殊な条件演算子

WHERE 節の中で使える特殊な条件演算子を紹介する。

... AND ...
   WHERE S.業者番号 <= 100 AND S.業者番号 >= 200 ;
... OR ...
   WHERE S.業者番号 >= 100 OR S.業者番号 <= 200 ;
NOT ...
   WHERE NOT S.業者番号 >= 100 ;
... IN ...
   WHERE S.業者番号 IN ( 'S1' , 'S4' ) ;
... BETWEEN A AND B 
   WHERE S.優良度 BETWEEN 50 AND 100 ;
... LIKE ...
   WHERE S.業者名 LIKE 'A_C社' ;   _ は任意の1文字 ABC社 ADC社
   WHERE S.業者名 LIKE 'A%社' ;    % は任意の0~N文字 A社, AA社 ABC社
... IS NULL
   WHERE S.業者名 IS NULL
   WHERE S.業者名 IS NOT NULL

集約関数

集約関数は、SQL の SELECT の射影部分で使える関数で、出力対象となった項目に対して、COUNT(),SUM(),AVG()といった計算を行うもの。

COUNT() - 項目の数
SUM() -   項目の合計
AVG() -   項目の平均
MAX() -   項目の最大値
MIN() -   項目の最低値

SELECT COUNT(S.業者番号) FROM S WHERE S.優良度 > 20 ;

集合計算

複数の SQL の結果に対し、集合和, 集合積, 集合差などの処理を行う。

... UNION ...  集合和
... EXPECT ... 集合差
... INTERSECT ... 集合積

SELECT S.業者名 FROM S WHERE S.所在 = '福井'
UNION
SELECT S.業者名 FROM S WHERE S.所在 = '東京'

教科書 40p の union の解説

前半の select 文で、(ノート,青),(消しゴム,白),… の6つ、後半の select文で (筆箱,青),(バインダ,緑) が求まる。この結果で2つの集合和が行われるが、集合計算の時に重複している要素が取り除かれるので、(ノート,青),(消しゴム,白),(筆箱,青),(バインダ,緑)の4つが最終的な答えとなる。

-- 教科書40p の例題
select G.商品名, G.色                                       -- (ノート,青)
    from G, SG                                             -- (消しゴム,白)
    where (G.商品番号 = SG.商品番号) and (SG.在庫量 <= 200) ;  -- (筆箱,青)
                                                           -- (バインダ,緑)
                                                           -- (ノート,青)   - 重複
                                                           -- (ノート,青)   - 重複
union
select G.商品名, G.色                                       -- (筆箱,青)     - 重複
    from G                                                 -- (バインダ,緑) - 重複
    where G.価格 >= 200 ;

-- 結果 = { (ノート,青),(消しゴム,白),(筆箱,青),(バインダ,緑) }

SQLの副問い合せ

前節の結合処理は時として効率が悪い。このような場合は、副問い合わせを用いる場合も多い。

SELECT S.業者名, S.所在
  FROM S
  WHERE S.業者番号 IN
     ( SELECT SG.業者番号
         FROM SG
         WHERE SG.商品番号 = 'G2'
           AND SG.在庫量 >= 200 ) ;

まず、『◯ IN { … }』 の比較演算子は、◯が{…}の中に含まれていれば真となる。また、SQLの中の (…) の中が副問い合わせである。

この SQL では、副問い合わせの内部には、テーブル S に関係する要素が含まれない。この場合、副問い合わせ(商品番号がG2で在庫量が200以上)は先に実行される。

{ (S1,G2,200), (S2,G2,400), (S3,G2,200), (S4,G2,200) }が該当し、その業者番号の{ S1, S2, S3, S4 }が副問い合わせの結果となる。最終的に SELECT … FROM S WHERE S.業者番号 IN { ‘S1’, ‘S2’, ‘S3’, ‘S4’ } を実行する。

相関副問い合わせ

SELECT G.商品名, G.色, G.価格
  FROM G
  WHERE 'S4' IN 
     ( SELECT SG.業者番号
         FROM SG
         WHERE SG.商品番号 = G.商品番号 ) ;

この副問い合わせでは、内部に G.商品番号 が含まれており、単純に()内を先に実行することはできない。こういった副問い合わせは、相関副問い合わせと呼ばれる。

処理は、Gのそれぞれの要素毎に、副問い合わせを実行し、その結果を使って WHERE節の判定を行う。WHERE節の選択で残った結果について、射影で商品名,色,価格が抽出される。

// 概念の説明用に、C言語風とSQL風を混在して記載する
for( int i = 0 ; i < sizeofarray( G ) ; i++ ) {
   SELECT SG.業者番号 FROM SG
    WHERE SG.商品番号 = G[i].商品番号 を実行
   if ( WHERE 'S4' IN 副query の結果が真なら ) {
      printf( ... ) ;
   }
}
// 全てのG 副queryの結果     WHERE 射影
// G1 ->  {S1,S2}
// G2 ->  {S1,S2,S3,S4} -> ◯ -> (ノート,青,170)
// G3 ->  {S1}
// G4 ->  {S1,S4}       -> ◯ -> (消しゴム,白,50)
// G5 ->  {S1,S4}       -> ◯ -> (筆箱,青,300)
// G6 ->  {S1}

演習課題

Paiza.io などを使って、自分で考えたSQLの命令を2つ実行すること。実行した命令とその意味を説明し、出力された結果と一致することを確認すること。

さらにこの実行と同じ結果が出力される様なC言語のプログラムを作成し、おなじく結果を確認すること。

考察として、SQLで書いたプログラムとCで書いたプログラムの違いや便利な点や、Cでのプログラムの速度を早めるにはどう書くと良いかを比較検討すること。

SQLの基本

先週の、関係データベースの導入説明を終えて、実際のSQLの説明。

SQLの命令

SQL で使われる命令は、以下のものに分類される。((参考資料))

  • データ定義言語 – CREATE, DROP, ALTER 等
  • データ操作言語 – INSERT, UPDATE, DELETE, SELECT 等
  • データ制御言語 – GRANT, REVOKE 等 (その他トランザクション制御命令など)

データベースは元々商用データの処理に使われることが多かったため、商用計算向けプログラム言語 COBOL と似ている点が多い。COBOL では、計算命令を 英語の文章の様に記述するのが特徴。

一般的な言語  // COBOL
A_100         // A-100     変数名にハイフン(マイナス記号)が使える。Aから100を引くという意味ではない。
A = 100 ;     // MOVE 100 TO A .
A = A + B ;   // ADD A B TO A .

create user

データベースを扱う際の create user 文は、DDL(Data Definition Language)で行う。

CREATE USER ユーザ名
    IDENTIFIED BY "パスワード"

grant

テーブルに対する権限を与える命令。

GRANT システム権限 TO ユーザ名
   データベースシステム全体に関わる権限をユーザに与える。
   (例) GRANT execute ON admin.my_package TO saitoh
GRANT オブジェクト権限 ON オブジェクト名 TO ユーザ名
   作られたテーブルなどのオブジェクトに関する権限を与える。
   (例) GRANT select,update,delete,insert ON admin.my_table TO saitoh
REVOKE オブジェクト権限 ON オブジェクト名 TO ユーザ名
   オブジェクトへの権限を剥奪する。

ただし、後に示す実験環境では、データベースのシステムにSQLiteを用いている。SQLite はネットワーク対応型のデータベースではないため、データベースをアクセスするユーザや権限の概念が存在せず、これらの命令は実行できても無視される。

create table

実際にテーブルを宣言する命令。構造体の宣言みたいなものと捉えると分かりやすい。ただし、作られたテーブルはRDBシステムが永続的に保存しているので、最初に一度実行するだけでよい。逆に、運用が始まったら大量のデータが実際に保存される。この段階でデータベースの設計が悪くてテーブルの内容を変更するのであれば、既存の全データを一旦掃き出し、テーブルを定義しなおし吐き出しておいたデータを再読み込みといった面倒な作業が必要となる。

CREATE TABLE テーブル名
   ( 要素名1  型 , 要素名2 型 ... ) ;
   PRIMARY KEY 制約
   1つの属性でのキーの場合、型の後ろに"PRIMARY KEY"をつける、
   複数属性でキーとなる場合は、要素列の最後に PRIMARY KEY(要素名,...) をつける。
   これによりKEYに指定した物は、重複した値を格納できない。

型には、以下の様なものがある。(Oracle)
   CHAR( size)  : 固定長文字列 / NCHAR国際文字
   VARCHAR2( size ) : 可変長文字列 / NVARCHAR2...
   NUMBER(桁) :指定 桁数を扱える数
   BINARY_FLOAT / BINARY_DOUBLE : 浮動小数点(float / double)
   DATE : 日付(年月日時分秒)
   SQLiteでの型
   INTEGER : int型
   REAL : float/double型
   TEXT : 可変長文字列型
   BLOB : 大きいバイナリデータ

DROP TABLE テーブル名
   テーブルを削除する命令

insert,update,delete

指定したテーブルに新しいデータを登録,更新,削除する命令

INSERT INTO テーブル名 ( 要素名,... ) VALUES ( 値,... ) ;
   要素に対応する値をそれぞれ代入する。
UPDATE テーブル名 SET 要素名=値 WHERE 条件
   指定した条件の列の値を更新する。
DELETE FROM テーブル名 WHERE 条件
   指定した条件の列を削除する。

select

データ問い合わせは、select文を用いる、 select文は、(1)必要なカラムを指定する射影、(2)指定条件にあうレコードを指定する選択、 (3)複数のテーブルの直積を処理する結合から構成される。

SELECT 射影 FROM 結合 WHERE 選択
   (例) SELECT S.業者番号 FROM S WHERE S.優良度 > 30 ;

理解確認

  • キー・プライマリキー・外部キーについて説明せよ。
  • 上記説明中の、科目テーブルにふさわしい create table 文を示せ。
  • select文における、射影,結合,選択について説明せよ。

SQLの演習環境の使い方

SQL の演習は、Paiza.IO で動作確認をしてください。

SQLの基礎/select文と射影・結合・選択

ここまで述べたようにデータベースでは記録されているデータの読み書きは、SQL で行われ、射影・結合・選択を表す処理で構成されることを示した。SQL の機能を理解するために、同じ処理を C 言語で書いたらどうなるのかを示す。

((( 元のSQL )))
SELECT S.業者番号         -- 必要とされるデータを抽出する射影 --
  FROM S                 -- 複数のテーブルを組合せる結合 --
  WHERE S.優良度 >= 20 ;  -- 対象となるデータを選び出す選択 --

((( SQLをC言語で書いたら )))
// 配列の個数を求める #define 文
#define sizeofarray(ARY) (sizeof(ARY) / sizeof(ARY[0]))
// C言語なら... S のデータを構造体宣言で書いてみる。
struct Table_S {
   char 業者番号[ 6 ] ; // 当然、C言語では要素名を
   char 業者名[ 22 ] ;  // 漢字で宣言はできない。
   int  優良度 ;
   char 所在[ 16 ] ;
} S[] = {
   { "S1" , "ABC社" , 20 , "福井" } ,
   :
} ;

// SELECT...をC言語で書いた場合の命令のイメージ
// 結合
for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
   // 選択
   if ( S[i].優良度 >= 20 )
      // 射影
      printf( "%d¥n" , S[i].業者番号 ) ;
}

Sは、テーブル名であり、文脈上対象テーブルが明らかな場合、フィールド名の前の テーブルは省略可能である。

SELECT 業者番号 FROM S WHERE 優良度 >= 20 ;

WHERE 節で記述できる条件式では、= , <>(not equal) , < , > , <= , >= の比較演算子が使える。
# これ以外の演算機能は、次週にて紹介予定。

直積と結合処理

ここで、SQLの最も便利な機能は、直積による結合処理。複数の表を組み合わせる処理。単純な表形式の関係データベースで、複雑なデータを表現できる基本機能となっている。

SELECT SG.商品番号 , S.所在
  FROM S , SG
  WHERE SG.業者番号 = S.業者番号

上記の様に FROM 節に複数のテーブルを書くと、それぞれのテーブルの直積(要素の全ての組み合わせ)を生成する処理が行われる。この機能が結合となる。しかし、これだけでは意味がないので、通常は外部キーが一致するレコードでのみ処理を行うように、WHERE SG.業者番号 = S.業者番号 のような選択を記載する。最後に、結果として欲しいデータを抽出する射影を記載する。

SELECTの結合処理と処理内容

selectでの選択,結合,射影の処理(select 射影 from 結合 where 選択)を理解するために、同じ処理をC言語で書いたらどうなるかを示す。

// C言語なら
struct Table_S {
   char 業者番号[ 6 ] ;
   char 業者名[ 22 ] ;
   int  優良度 ;
   char 所在[ 16 ] ;
} S[] = {
   { "S1" , "ABC社" , 20 , "福井" } ,
   :
} ;
struct Table_SG {
   char 業者番号[ 6 ] ;
   char 商品番号[ 6 ] ;
   int  在庫量 ;
} = SG[] {
   { "S1" , "G1" , 300 } ,
   :
} ;

// FROM S
for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
   // FROM SG
   for( int j = 0 ; j < sizeofarray( SG ) ; j++ ) {
      // WHERE S.業者番号 = SG.業者番号
      if ( strcmp( S[i].業者番号 , SG[j].業者番号 ) == 0 ) {
         // SELECT SG.商品番号 , S.所在
         printf( "%s %s¥n" , SG[j].商品番号 , S[i].所在 ) ;
      }
   }
}

(1) i,jの2重forループが、FROM節の結合に相当し、(2) ループ内のif文がWHERE節の選択に相当し、(3) printfの表示内容が射影に相当している。

射影の処理では、データの一部分を抽出することから、1件の抽出レコードが同じになることもある。この際の重複したデータを1つにまとめる場合には、DISTINCT を指定する。

SELECT DISTINCT SG.商品番号, S.所在
   FROM S, SG
   WHERE SG.業者番号 = S.業者番号 ;

上記のプログラムでは、データの検索は単純 for ループで記載しているが、内部で HASH などが使われていると、昇順に処理が行われない場合も多い。出力されるデータの順序を指定したい場合には、ORDER BY … ASC (or DESC) を用いる

SELECT SG.商品番号, S.所在
   FROM S, SG
   WHERE SG.業者番号 = S.業者番号
   ORDER BY S.所在 ASC ;        -- ASC:昇順 , DESC:降順 --

表型のデータと串刺し

FROM に記載する直積のための結合では、2つ以上のテーブルを指定しても良い。

SELECT S.業者名, G.商品名, SG.在庫量
   FROM S, G, SG
   WHERE  S.業者番号 = SG.業者番号  -- 外部キー業者番号の対応付け --
     AND  SG.商品番号 = G.商品番号  -- 外部キー商品番号の対応付け --

// 上記の処理をC言語で書いたら

struct Table_G {
   char 商品番号[ 6 ] ;
   char 商品名[ 22 ] ;
   char 色[ 4 ] ;
   int  価格 ;
   char 所在[ 12 ] ;
} = G[] = {
   { "G1" , "赤鉛筆" , "青" , 120 , "福井" } ,
   :
} ;

// [結合] S,G,SGのすべての組み合わせ
// FROM S -- 結合
for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
   // FROM G -- 結合
   for( int j = 0 ; j < sizeofarray( G ) ; j++ ) {
      // FROM SG -- 結合
      for( int k = 0 ; k < sizeofarray( SG ) ; k++ ) {

         // [選択] 条件でレコードを選び出す
         //   WHERE S.業者番号 = SG.業者番号
         //     AND SG.商品番号 = G.商品番号
         if ( strcmp( S[i].業者番号 , SG[k].業者番号 ) == 0
           && strcmp( SG[k].商品番号 , G[j].商品番号 ) == 0 ) {
            // [射影] 使用するフィールドを出力
            printf( "%s %s %d\n" ,
                    S[i].業者名 , G[j].商品名 , SG[k].在庫量 ) ;
         }
      }
   }
}

ここで結合と選択で実行している内容は、外部キーである業者番号を S から探す、商品番号を G から探している。この、外部キー対応しているものを探すという視点で、上記 C 言語のプログラムを書き換えると、以下のように表せる。

// FROM SG
for( int k = 0 ; k < sizeofarray( SG ) ; k++ ) {
   // 外部キー SG.業者番号に対応するものを S から探す
   for( int i = 0 ; i < sizeofarray( S ) ; i++ ) {
      if ( strcmp( S[i].業者番号 , SG[k].業者番号 ) == 0 ) {
         // 外部キー SG.商品番号に対応するものを G から探す
         for( int j = 0 ; j < sizeofarray( G ) ; j++ ) {
            if ( strcmp(SG[k].商品番号,G[j].商品番号) == 0 ) {
               printf( "%s %s %d\n" ,
                       S[i].業者名,G[j].商品名,SG[k].在庫量 ) ;
            }
         }
      }
   }
}

このような、複数の表の実体と関係を対応付けた検索を、データベースの専門の人は「データを串刺しにする」という言い方をすることも多い。

また、SQL では、このようなイメージの繰り返し処理を、数行で分かりやすく記述できている。このC言語のプログラム例では、キーに対応するものを単純 for ループで説明しているが、SQL ではプライマリキーなら、B木やハッシュなどを用いた効率の良い検索が自動的に行われる。このため、SQLを扱う応用プログラマは、SQLの結合の処理方法は通常はあまり考えなくて良い。

データベースの用語など

データベースの機能

データベースを考える時、利用者の視点で分類すると、以下の3つの視点の違いがある。

  1. データベースの管理者(データベース全体の管理)、
  2. 応用プログラマ(SQLなどを使って目的のアプリケーションに合わせた処理を行う)、
  3. エンドユーザ(データベース処理の専門家でなく、DBシステムのGUIを使ってデータベースを操作する)

データベース管理システム(DBMS)では、データとプログラムを分離してプログラムを書けるように、データ操作言語(SQL)で記述する。

また、データは独立して扱えるようにすることで、データへの物理的なアクセス方法があっても、プログラムの変更が不要となるようにする。

データベースは、利用者から頻繁に不定期にアクセスされる。このため、データの一貫性が重要となる。これらを満たすためには、(a) データの正当性の確認、(b) 同時実行制御(排他制御)、(c) 障害回復の機能が重要となる。

これ以外にも、データベースからデータを高速に扱えるためには、検索キーに応じてインデックスファイルを管理してくれる機能や、データベースをネットワーク越しに使える機能などが求められる。

データベースに対する視点

実体のデータをそれぞれの利用者からデータベースを記述したものはスキーマと呼ばれる。そのスキーマも3つに分けられ、これを3層スキーマアーキテクチャと呼ぶ。

  • 外部スキーマ – エンドユーザからどんなデータに見えるのか (create view の例)
  • 概念スキーマ – 応用プログラマからは、どのような表の組み合わせで見えるのか、表の中身はどのようなものなのか。
  • 内部スキーマ – データベース管理者からみて、表の中身は、どのようなファイル名でどのような形式でどう保存されているのか

データモデル

データを表現するモデルには、いくつかのモデルがある。

関係データベースの基礎

関係データベースは、1970年頃に、E.F.コッド博士によりデータベースのための数学的な理論が確立された。

1974 – IBM SEQUEL言語開発, Ingres初期型
1977 – ラリー・エリソンらが Oracle の前進となった SDL 社を創業, 1982に Oracle に改称

  • 集合 A, B – 様々なデータ
  • 直積 AB = { (x,y| xA , yB } 集合A,Bのすべての組み合わせ
  • 関係 R(A,B) すべての組み合わせのうち、関係があるもの。直積A,Bの部分集合

例えば、A={ s,t,u } , B={ p,q } (定義域) なら、

AB = { (s,p) , (s,q) , (t,p) , (t,q) , (u,p) , (u,q) }

このうち、Aが名前(sさん,tさん,uさん)、Bが性別(p=男性,q=女性)を表すなら、

R(A,B) = { (s,p) , (t,q) , (u,p) } (例)
(例):(sさん,男性) , (tさん,女性) , (uさん,男性)

前の例を使うなら、集合<学生>, 集合<科目> であり、直積 <学生> ✕ <科目> のうち、実際に受講したという結果が、関係 R( <学生> , <科目> ) に相当する。

SQLの導入

コッドが提唱した関係データベースの理論に基づいて作った Alpha 言語を元に、IBM が SEQUEL を開発したが、商標の問題で SQL と名前が変更された。同じころにコッドらの論文を元に、ラリー・エリソンらにより Oracle が開発されている。

SQLは、データベース管理システム(RDBMS)において、データの操作や定義を行うためのデータベース言語問い合わせ言語)である。プログラミングにおいてデータベースへのアクセスのために、他のプログラミング言語と併用される。COBOL の影響が大きく英語の文章のような文法となっている。

SQLの機能は、以下の3つに大きく分けられている。

  • データ定義言語(Data Definition Language)
    • CREATE , DROP , ALTER
  • データ操作言語(Data Manipulation Language)
    • INSERT INTO , UPDATE…SET , DELETE FROM , SELECT…FROM…WHERE
  • データ制御言語(Data Control Language)
    • GRANT , REVOKE , COMMIT , ROLLBACK

今回の授業では、Paiza.IO の MySQL 環境を使って演習を行う。

理解確認

  • データベースにおける3層スキーマアーキテクチャについて説明せよ
  • 集合A,Bが与えられた時、関係R(A,B) はどのようなものか、数学定義や実例をあげて説明せよ。

データベースガイダンス2024

インターネットの情報量

インターネット上の情報量の話として、2010年度に281EB(エクサバイト)=281✕1018B(参考:kMGTPEZY)で、2013年度で、1.2 ZB(ゼタバイト)=1.2✕1021B という情報があった。ムーアの法則の「2年で2倍」の概算にも、それなりに近い。 では、今年2024年であれば、どのくらいであろうか?

しかし、これらの情報をGoogleなどで探す場合、すぐにそれなりに情報を みつけてくれる。これらは、どの様に実装されているのか?

Webシステムとデータベース

まず、指定したキーワードの情報を見つけてくれるものとして、 検索システムがあるが、このデータベースはどのようにできているのか?

Web創成期の頃であれば、Yahooがディレクトリ型の検索システムを構築してくれている。(ページ作者がキーワードとURLを登録する方式) しかし、ディレクトリ型では、自分が考えたキーワードではページが 見つからないことが多い。

そこで、GoogleはWebロボット(クローラー)による検索システムを構築した。 Webロボットは、定期的に登録されているURLをアクセスし、 そのページ内の単語を分割しURLと共にデータベースに追加する。 さらに、ページ内にURLが含まれていると、そのURLの先で、 同様の処理を再帰的に繰り返す。

これにより、巨大なデータベースが構築されているが、これを普通のコンピュータで実現すると、処理速度が足りず、3秒ルール or 5秒ルール (Web利用者は次のページ表示が3秒を越えると、次に閲覧してくれない)を実現するための能力が不足してしまう。だからこそ、これらを処理するには負荷分散が重要となる。

Webシステムの負荷分散

一般的に、Webシステムを構築する場合には、 1段:Webサーバ、2段:動的ページ言語、3段:データベースとなる場合も 多い。この場合、OS=Linux,Web=Apache,DB=MySQL,動的ページ生成言語=PHPの組合せによる、 LAMP構成とする場合も多い。

                            OS = Linux
               [ Webサーバ   動的Web言語  データベース ]
   User - - - - - Apache ----- PHP ----- MySQL

一方で、大量のデータを処理するDBでは、フロントエンド,セカンダリDB(スレーブDB),プライマリDB(マスタDB)のWebシステムの3段スキーマ構成となることも多い。
フロントエンドは、大量のWebユーザからの問合せを受ける部分であり、必要に応じてセカンダリDBに問合せを行う。
大量のユーザからの問合せを1台のデータベースシステムで捌くには処理の負荷が高い場合、複数のデータベースで負荷分散を行う。プライマリDBは、複数のデータベースシステムの原本となるべきデータを保存される。負荷分散の為に分散されたセカンダリDBは、プライマリDBと内容の同期をとりながらフロントエンドからの問合せに応答する。

データベースシステム

データベースには、ファイル内のデータを扱うためのライブラリの BerkleyDB といった場合もあるが、複雑なデータの問い合わせを実現する 場合には、リレーショナル・データベース(RDB)を用いる。 RDBでは、データをすべて表形式であらわし、SQLというデータベース 問い合わせ言語でデータを扱う。 また、問い合わせは、ネットワーク越しに実現可能であり、こういった RDBで有名なものとして、Oracle , MySQL , PostgreSQL などがある。 単一コンピュータ内でのデータベースには、SQLite などがある。

リレーショナルデータベースの串刺し

商品名 単価 個数 価格
りんご 200 2 400
みかん 50 6 300
アイスクリーム 125 1 125
みかん 50 3 150

このような表データでは、たとえば「みかん」の単価が変更になると、2行目,4行目を変更しなければいけなくなる。巨大な表の場合、これらの変更は大変。

そこで、この表を2つに分類する。

単価表
商品ID 商品名 単価
1010 りんご 125
1011 みかん 50
2101 アイスクリーム 125
販売表
商品ID 個数
1010 2
1011 6
2101 1
1011 3
必要に応じて、2つの表から、以下のような SQL の命令で、データを抽出する。

select 単価表.商品名, 単価表.単価, 販売表.個数, 単価表.単価*販売表.個数
    from 単価表, 販売表 ;

 

データベースに求められるのACID特性

データベースシステムと呼ばれるには、ACID特性が重要となる。(次に述べるデータベースが無かったら…を参照)

  • A: 原子性 (Atomicity) – 処理はすべて実行するか / しない のどちらか。
  • C: 一貫性 (Consistency) – 整合性とも呼ばれ、与えられたデータのルールを常に満たすこと。
  • I: 独立性 (Isolation) – 処理順序が違っても結果が変わらない。それぞれの処理が独立している。
  • D: 永続性 (Durability) – データが失われることがない(故障でデータが無くならないとか)

しかし、RDBでは複雑なデータの問い合わせはできるが、 大量のデータ処理のシステムでは、フロントエンド,セカンダリDB,プライマリDB の同期が問題となる。この複雑さへの対応として、最近は NoSQL(RDB以外のDB) が 注目されている。(例: Google の BigTable)

データベースが無かったら

これらのデータベースが無かったら、どのようなプログラムを作る 必要があるのか?

情報構造論ではC言語でデータベースっぽいことをしていたが、 大量のデータを永続的に扱うのであれば、ファイルへのデータの読み書き 修正ができるプログラムが必要となる。

こういったデータをファイルで扱う場合には、1件のデータ長が途中で 変化すると、N番目のデータは何処?といった現象が発生する。 このため、簡単なデータベースを自力で書くには、1件あたりのデータ量を 固定し、lseek() , fwrite() , fread() などの 関数でランダムアクセスのプログラムを書く必要がある。

また、データの読み書きが複数同時発生する場合には、排他処理(独立性)も 重要となる。例えば、銀行での預け金10万の時、3万入金と、2万引落としが 同時に発生したらどうなるか? 最悪なケースでは、 (1)入金処理で、残金10万を読み出し、 (2)引落し処理で、残金10万を読み出し、 (3)入金処理で10万に+3万で、13万円を書き込み、 (4)引落し処理で、残金10万-2万で、8万円を書き込み。 で、本来なら11万になるべき結果が、8万になるかもしれない。

さらに、コンピュータといってもハードディスクの故障などは発生する。 障害が発生してもデータの原子性永続性を保つためには、バックアップや 障害対応が重要となる。

データベース期末試験で鳥山明氏を…

先日の #データベース の正規化のテスト問題。最近の原作と作画の分担された作品との対比という点で、 #鳥山明 さんのお名前を使わせてもらっていた。

データベース2023-講義録

システム

最新の投稿(電子情報)

アーカイブ

カテゴリー