プログラム言語(C言語)の基礎
学際科目の情報制御基礎において、学科間でプログラミングの初歩の理解差があるので、簡単なC言語プログラミングの基礎の説明。
Hello World
“Hello World”と表示するだけのC言語プログラムは以下のようになる。
// コメントの書き方1 // "//"で始まる行は、プログラムの説明(コメント) /* コメントの書き方2 */ // "/*"から"*/"で囲まれる範囲もコメント #include <stdio.h> // #で始まる行はプリプロセッサ行 // stdio.h には、入出力関数の説明が書いてある int main() { // 一連の処理の塊を関数と呼ぶ。 // C言語では main() 関数を最初に実行する。 printf( "Hello World\n" ) ; // printf() は、以下の物を表示する関数。 // "\n"は、文字を出力して改行するための特殊文字 return 0 ; // main() 関数が、正常終了したことを意味する } // 0 を返り値として返す。
“#include <…>”のプリプロセッサ行は、最初のうちは解りにくいので、「これを書かないとダメ…」と思っていればいい。
#include <stdio.h> は、別ファイル(ヘッダファイル) stdio.h に記載されているプログラムリストを読み込む機能。
stdio.h には、printf() や scanf() などの基本的な関数や定数などの情報が記載されている。
C言語の基本的な命令(文)は、”;”で終わる。(単文)
複数の処理をまとめる場合には、”{“から”}”の中に、複数の文を書き並べる。(複文)
関数とは、複数の処理をひとまとめにした、処理の「かたまり」と思えばいい。
関数の型 関数名( 仮引数 ... ) { 処理1 ... ; 処理2 ... ; }printf() の 文字列中の”\n”(あるいは”¥n”)は、改行を意味する。
「\:バックスラッシュ」は、日本語環境では「¥:円記号」で入力・表示することが多い。
変数と代入
#include <stdio.h> #include <math.h> // 数学関数を使う 平方根 sqrt() を使っている int main() { // 変数の宣言 int i ; // 符号付き32bit変数 i の宣言 int a = 123 , j ; // a を 123 で初期化 , j も整数型 float x ; // 単精度実数の x を宣言 double y = 1.234 , z ; // 倍精度実数の y を宣言し 1.234 で初期化, // z も倍精度実数 // 変数への代入 i = 1 ; // i に 1 を代入 i = 12 + 2 * a ; // 12+2*a を代入 a は123なので、 // iには、258 が入る。 x = sqrt( 2.0 ) ; // x に 2.0 の平方根(1.4142)を代入 z = y * 2.0 + x * 3.0 ; // y*2+x*3をzに代入 // 変数の内容の表示 printf( "%d\n" , i ) ; // 整数型(%d)で、 i の値を表示 printf( "%f\n" , x ) ; // 単精度実数(%f) で、x の値を表示 printf( "%lf\n" , z ) ; // 倍精度実数(%lf)で、z の値を表示 printf( "iの値は%d,xの値は%lfです。\n" , i , x ) ; return 0 ; // 正常終了 0 を返す }
変数(計算結果を格納する入れ物)を使う場合は、変数を宣言する。
変数名には、何が入っているのか理解しやすいように、名前をつければいい。(英字で始まり、英数字が続くもの,_が入ってもいい)
変数に値を記憶する時は、”変数名=式 ;”の様に書くと、代入演算子”=” の右辺を計算し、その計算結果が左辺の変数に保存される。
変数の内容を表示する時には、printf() の文字列の中に、%d,%f,%lf などの表示したい式の型に応じたものを書いておく。
式の値が、その %.. の部分に書き込まれて、出力される。
繰り返しの制御命令
最も基礎的な繰り返し命令として、for() 文を説明。
#include <stdio.h> int main() { int i ; for( i = 1 ; i <= 10 ; i++ ) { // iを1から10まで変化させる。 printf( "%d %d\n" , i , i*i ) ; // i と iの二乗を表示 } return 0 ; }
for文の意味を説明するために、対応するフローチャートを示す。
先のプログラムをフローチャートで示し、その命令の実行順序と、その変数の変化を下図に示す。
練習問題1
簡単なプログラミングの練習として、前回講義の練習問題をC言語で書いてみよう。
- 電気電子工学科,電子情報工学科の学生は、出席番号が奇数は処理C,偶数は処理Dについて回答せよ。
- それ以外の学科の学生は、出席番号が奇数は処理A,偶数は処理Bの結果について回答せよ。
制御構文とフローチャート
構文の入れ子
文と複文
C言語の文法で、{,} は複数の処理を連続して実行し、複文とよばれる。複数ので文を構成する。
これに対して、a = 123 ; といったセミコロンで終わる「処理 ;」は単文といい、1つの式で文となる。
制御構文のif文は、「if ( 条件 ) 文真」で文となる。このため条件が満たされたときに実行する文真が単文であれば、{,} は不要である。条件が満たされない場合の処理も記述するときには、「if ( 条件 ) 文真 else 文偽」を使う。
// if文 if ( 条件 ) { a = 123 ; } if ( 条件 ) a = 123 ; // 単文なら中括弧は不要 // if-then-else if ( x >= 60 ) { printf( "合格点\n" ) ; } else { printf( "不合格点\n" ) ; }
同じように、「while(条件) 文」、「for(A,B,C) 文」、「do 文 while(条件) ;」も、それぞれ文を構成する。
{,} の複文は、{ 文 文 文… } のように、一連の文を実行し、それを1つの文として扱うための機能である。
// while 文 i = 0 ; while( i < 10 ) { printf( "%d\n" , i ) ; i++ ; } // for 文 for( i = 0 ; i < 10 ; i++ ) { printf( "%d\n" , i ) ; } // do-while 文 i = 0 ; do { printf( "%d\n" , i ) ; i++ ; } while( i < 10 ) ;
練習問題2
プログラムの制御構造の確認として、以下の3つ(No.1,No.2,No.3)の問題から、
M科,C科,B科の学生は((自分の出席番号+1) % 2)+1 の問題、E科,EI科の学生は、((自分の出席番号+1) % 3)+1について、プログラムのフローチャートを描き、その処理がどのように進むのか答えよ。
レポートには、以下の点を記載すること。
- フローチャート
- 実行順序と変数の変化がわかる内容
- (できれば、実際にプログラムを動かし、正しいことを検証)
// No.1 #include <stdio.h> int main() { int i , j ; for( i = 1 ; i <= 4 ; i++ ) { if ( i % 2 == 0 ) { // i%2 は2で割った余り,i%2==0ならば偶数のとき for( j = 1 ; j <= 2 ; j++ ) printf( "%d %d\n" , i , j ) ; } } return 0 ; } // No.2 #include <stdio.h> int main() { int x = 10 , y = 7 , s = 0 ; while( x > 0 ) { if ( x % 2 != 0 ) s = s + y ; y = y * 2 ; x = x / 2 ; // 注意: xは整数型 } printf( "%d\n" , s ) ; return 0 ; } // No.3 #include <stdio.h> int a[ 6 ] = { 2 , 3 , 5 , 8 , 13 , 21 } ; int main() { int left = 0 , right = 6 , mid ; int key = 13 ; while( right - left > 0 ) { mid = (left + right) / 2 ; // 整数型で計算 printf( "%d\n" , a[ mid ] ) ; if ( a[ mid ] == key ) break ; else if ( a[ mid ] > key ) right = mid ; else left = mid + 1 ; } return 0 ; }
抽象クラスの演習
前回までで、抽象クラス(純粋仮想基底クラス)の説明を行ったので、前回説明の甘かった点を若干説明して、後半は演習とする。
資料の再掲はしないけど、改めて以下の点を説明。
- Java GUIによる派生の使われ方
- コールバック関数
- テンプレートクラス
抽象クラスを使った演習
前回の講義資料を元に、様々な異なる型のデータを並び替えるプログラムを作成せよ。
講義資料では、整数・文字列・実数型のデータの並び替えを示した。新たに、名前と年齢のデータの並び替えができることを確かめよ。
データは、年齢の昇順とし、同じ年齢の場合は、名前で昇順となること。漢字の名前は読み仮名などの問題があるので、名前は英字による名前とする。
レポートには、プログラムリスト、説明、動作検証、考察を記載すること。
マイコンとは
ポインタとメモリの使用効率
ポインタの加算と配列アドレス
ポインタに整数値を加えることは、アクセスする場所が、指定された分だけ後ろにずれることを意味する。
// ポインタ加算の例 int a[ 5 ] = { 11 , 22 , 33 , 44 , 55 } ; void main() { int* p ; // p∇ p = &a[2] ; // a[] : 11,22,33,44,55 // -2 +0 +1 printf( "%d¥n" , *p ) ; // 33 p[0] printf( "%d¥n" , *(p+1) ) ; // 44 p[1] printf( "%d¥n" , *(p-2) ) ; // 11 p[-2] p = a ; // p∇ printf( "%d¥n" , *p ) ; // a[] : 11,22,33,44,55 p++ ; // → p∇ printf( "%d¥n" , *p ) ; // a[] : 11,22,33,44,55 p += 2 ; // → → p∇ printf( "%d¥n" , *p ) ; // a[] : 11,22,33,44,55 }
ここで、注意すべき点は、ポインタの加算した場所の参照と、配列の参照は同じ意味となる。
*(p + 整数式) と p[ 整数式 ] は同じ意味
特に配列 a[] の a だけを記述すると、配列の先頭を意味することに注意。
構造体とポインタ
構造体を関数に渡して処理を行う例を示す。
struct Person { char name[ 10 ] ; int age ; } ; struct Person table[3] = { { "t-saitoh" , 55 } , { "tomoko" , 44 } , { "mitsuki" , 19 } , } ; void print_Person( struct Person* p ) { printf( "%s %d\n" , (*p).name , // * と . では . の方が優先順位が高い // p->name と簡単に書ける。 p->age ) ; // (*p).age の簡単な書き方 } void main() { for( int i = 0 ; i < 3 ; i++ ) { print_Person( &(table[i]) ) ; // print_Person( table + i ) ; でも良い } }
構造体へのポインタの中の要素を参照する時には、アロー演算子 -> を使う。
練習問題(2018年度中間試験問題より)
次にメモリの利用効率の話について解説する。
配列宣言でサイズは定数
C言語では、配列宣言を行う時は、配列サイズに変数を使うことはできない。
最近のC(C99)では、実は下記のようなものは、裏で後述のalloca()を使って動いたりする。(^_^;
void foo( int size ) { int array[ size ] ; // エラー for( int i = 0 ; i < size ; i++ ) array[ i ] = i*i ; } void main() { foo( 3 ) ; foo( 4 ) ; }
メモリ利用の効率
配列サイズには、定数式しか使えないので、1クラスの名前のデータを覚えるなら、以下のような宣言が一般的であろう。
#define MEMBER_SIZE 50 #define NAME_LENGTH 20 char name[ MEMBER_SIZE ][ NAME_LENGTH ] ;
しかしながら、クラスに寿限無とか銀魂の「ビチグソ丸」のような名前の人がいたら、20文字では足りない。(C言語の普通の配列宣言では、”t-saitoh”くんは配列サイズ9byte、”寿限無”くんは配列220byte といった使い方はできない) また、クラスの人数も、巨大大学の学生全員を覚えたいとい話であれば、 10000人分を用意する必要がある。 ただし、10000人の”寿限無”ありを考慮して、5Mbyte の配列を準備したのに、与えられたデータ量が100件で終わってしまうなら、その際のメモリの利用効率は極めて低い。
このため、最も簡単な方法は、以下のように巨大な文字配列に先頭から名前を入れていき、 文字ポインタ配列に、各名前の先頭の場所を入れる方式であれば、 途中に寿限無がいたとしても、問題はない。
char array[2000] = "ayuka¥0mitsuki¥0t-saitoh¥0tomoko¥0....." ; char *name[ 50 ] = { array+0 , array+6 , array+14 , array+23 , ... } ;
この方式であれば、2000byte + 4byte(32bitポインタ)×50 のメモリがあれば、 無駄なメモリ空間も必要最低限とすることができる。
参考:
寿限無(文字数:全角103文字)
さる御方、ビチグソ丸(文字数:全角210文字)
引用Wikipedia
大きな配列を少しづつ貸し出す処理
// 巨大な配列 char str[ 10000 ] ; // 使用領域の末尾(初期値は巨大配列の先頭) char* sp = str ; // 文字列を保存する関数 char* entry( char* s ) { char* ret = sp ; strcpy( sp , s ) ; sp += strlen( s ) + 1 ; return ret ; } int main() { char* names[ 10 ] ; names[ 0 ] = entry( "saitoh" ) ; names[ 1 ] = entry( "jugemu-jugemu-gokono-surikire..." ) ; return 0 ; } // str[] s a i t o h ¥0 t o m o k o ¥0 // ↑ ↑ // names[0] names[1]
このプログラムでは、貸し出す度に、sp のポインタを後ろに移動していく。
スタック
この貸し出す度に、末尾の場所をずらす方式にスタックがある。
int stack[ 100 ] ; int* sp = stack ; void push( int x ) { *sp = x ; // 1行で書くなら sp++ ; // *sp++ = x ; } int pop() { sp-- ; return *sp ; // return *(--sp) ; } int main() { push( 1 ) ; push( 2 ) ; push( 3 ) ; printf( "%d¥n" , pop() ) ; printf( "%d¥n" , pop() ) ; printf( "%d¥n" , pop() ) ; return 0 ; }
スタックは、最後に保存したデータを最初に取り出せる(Last In First Out)から、LIFO とも呼ばれる。
このデータ管理方法は、最後に呼び出した関数が最初に終了することから、関数の戻り番地の保存や、最後に確保した局所変数が最初に不要となることから、局所変数の管理に利用されている。
alloca() 関数
局所変数と同じスタック上に、一時的にデータを保存する配列を作り、関数が終わると不要になる場合には、alloca() 関数が便利である。alloca の引数には、必要なメモリの byte 数を指定する。100個の整数データを保存するのであれば、int が 32bit の 4byte であれば 400byte を指定する。ただし、int 型は16bitコンピュータなら2byteかもしれないし、64bitコンピュータなら、8byte かもしれないので、sizeof() 演算子を使い、100 * sizeof( int ) と書くべきである。
#include <alloca.h> void foo( int size ) { int* p ; // p = (int*)alloca( sizeof( int ) * size ) ; for( int i = 0 ; i < size ; i++ ) p[ i ] = i*i ; } void main() { foo( 3 ) ; foo( 4 ) ; }
alloca() は、指定された byte 数のデータ領域の先頭ポインタを返すが、その領域を 文字を保存するために使うか、int を保存するために使うかは alloca() では解らない。alloca() の返り値は、使う用途に応じて型キャストが必要である。文字を保存するなら、(char*)alloca(…) 、 intを保存するなら (int*)alloca(…) のように使う。
ただし、関数内で alloca で確保したメモリは、その関数が終了すると、その領域は使えなくなる。このため、最後に alloca で確保したメモリが、最初に不要となる…ような使い方でしか使えない。
抽象クラスの純粋指定
専攻科のオブジェクト指向プログラミングの授業で、抽象クラスの説明をしたけど、抽象クラスで仮想関数が定義できないところでは、以下のような ” = 0 ” で、仮想関数が無いことを明示する必要がある。「んで、=0 ってなんで zero やねん?」との疑問。
ということで、いろいろと試してみた。
class A { public: virtual void print() const = 0 ; } ; // この書き方が基本。 class A { public: virtual void print() const = 123 ; // 数字を書いてみた。 } ; // error: invalid pure specifier (only ‘= 0’ is allowed) before ‘;’ token
‘= 0′ だけが許されているとのエラーだし、これがすべてかな。
でも、なんとなく気に入らないので、C言語では、NULL は、’#define NULL 0′ で定義されているので、’= NULL’ と書けば、仮想関数のポインタが NULL っぽいし、この書き方が、自分的には、一番しっくりくるんだけど…
#include <stdio.h> class A { public: virtual void print() const = NULL ; } ; // error: invalid pure specifier (only ‘= 0’ is allowed) before ‘;’ token
どうも C++ では、’#define NULL 0′ ではないみたい。試しに、先頭に ‘#define NULL 0′ を書いたら、’#define NULL __null’ で定義されていて違うよ…みたいなエラーが表示された。んで、’__null’ って何?とは思うけど、こういうことらしい。ポインタの型のデータ長の’0’で定義されている。
ためしに、C++ の null で初期化は…と思ったけど、やっぱりだめ。
class A { public: virtual void print() const = null ; } ; // error: invalid pure specifier (only ‘= 0’ is allowed) before ‘;’ token
抽象クラス(純粋仮想基底クラス)
前回説明した仮想関数では、基底クラスから派生させたクラスを作り、そのデータが混在してもクラスに応じた関数(仮想関数)を呼び出すことができる。
この仮想関数の機能を逆手にとったプログラムの記述方法として、抽象クラス(純粋仮想基底クラス)がある。その使い方を説明する。
JavaのGUIにおける派生の使い方
先週の講義では、派生を使ったプログラミングは、GUI で使われていることを紹介したが、例として Java のプログラミングスタイルを少し紹介する。
例えば、Java で アプレット(ブラウザの中で動かすJavaプログラム)を作る場合の、最小のサンプルプログラムは、以下のようになる。
import java.applet.Applet; // C言語でいうところの、Applet 関連の処理を include import java.awt.Graphics; public class App1 extends Applet { // Applet クラスから、App1 クラスを派生 public void paint(Graphics g) { // 画面にApp1を表示する必要がある時に呼び出される。 g.drawString("Hello World." , 100 , 100); } }
この例では、ブラウザのGUIを管理する Applet クラスから、App1 というクラスを派生(extendsキーワード)し、App1 固有の処理として、paint() メソッドを定義している。GUI のプログラミングでは、本来ならマウスが押された場合の処理などを記述する必要があるが、このプログラムでは paint() 以外何も書かれていない。これはマウス処理などは、基底クラスのAppletのマウス処理が継承されるので、省略してもうまく動くようになっている。
純粋仮想基底クラス
純粋仮想基底クラスとは、見かけ上はデータを何も持たないクラスであり、本来なら意味がないデータ構造となってしまう。しかし、派生クラスで要素となるデータと仮想関数で機能を与えることで、基底クラスという共通部分から便利な活用ができる。(実際には、型を区別するための型情報を持っている)
例えば、C言語であれば一つの配列に、整数、文字列、実数といった異なる型のデータを記憶させることは本来ならできない。しかし、以下のような処理を記載すれば、可能となる。
C言語では、1つの記憶域を共有するために共用体(union)を使うが、C++では仮想関数が使えるようになり、型の管理をプログラマーが行う必要のある「面倒で危険な」共用体を使う必要はなくなった。
// 純粋仮想基底クラス class Object { public: virtual void print() const = 0 ; // 中身の無い純粋基底クラスで、 // 仮想関数を記述しない時の書き方。 } ; // 整数データの派生クラス class IntObject : public Object { private: int data ; public: IntObject( int x ) { data = x ; } virtual void print() const { printf( "%d\n" , data ) ; } } ; // 文字列の派生クラス class StringObject : public Object { private: char data[ 100 ] ; public: StringObject( const char* s ) { strcpy( data , s ) ; } virtual void print() const { printf( "%s\n" , data ) ; } } ; // 実数の派生クラス class DoubleObject : public Object { private: double data ; public: DoubleObject( double x ) { data = x ; } virtual void print() const { printf( "%lf\n" , data ) ; } } ; // 動作確認 int main() { Object* data[3] = { new IntObject( 123 ) , new StringObject( "abc" ) , new DoubleObject( 1.23 ) , } ; for( int i = 0 ; i < 3 ; i++ ) { // 123 data[i]->print() ; // abc } // 1.23 と表示 return 0 ; } ;
このプログラムでは、純粋仮想基底クラスObjectから、整数IntObject, 文字列StringObject, 実数DoubleObject を派生させ、そのデータを new により生成し、Objectの配列に保存している。
仮想関数を使うと、Object型の中に自動的に型情報が保存されるようになる。一般的な実装では、各派生クラス用の仮想関数のポインタテーブル(vtable)へのポインタが使われる。
Javaなどのオブジェクト指向言語では、全てのクラス階層のスーパークラスとして、Object を持つように作られている。
様々な型に適用できるプログラム
次に、純粋仮想基底クラスの特徴を応用したプログラムの作り方を説明する。
例えば、以下のような最大選択法で配列を並び替えるプログラムがあったとする。
int a[5] = { 11, 55, 22, 44, 33 } ; void my_sort( int array[] , int size ) { for( int i = 0 ; i < size - 1 ; i++ ) { int max = i ; for( int j = i + 1 ; j < size ; j++ ) { if ( array[j] > array[max] ) max = j ; } int tmp = array[i] ; array[i] = array[max] ; array[max] = tmp ; } } int main() { my_sort( a , 5 ) ; }
しかし、この整数を並び替えるプログラムがあっても、文字列の並び替えや、実数の並び替えがしたい場合には、改めて文字列用並び替えの関数を作らなければいけない。しかも、ほとんどが同じような処理で、改めて指定された型のためのプログラムを作るのは面倒である。
C言語のデータの並び替えを行う、qsort() では、関数ポインタを用いることで、様々なデータの並び替えができる。しかし、1件あたりのデータサイズや、データ実体へのポインタを正しく理解する必要がある。
#include <stdio.h> #include <stdlib.h> int a[ 4 ] = { 11, 33, 22, 44 } ; double b[ 3 ] = { 1.23 , 5.55 , 0.11 } ; // 並び替えを行いたいデータ専用の比較関数を作る。 // a>bなら+1, a=bなら0, a<bなら-1を返す関数 int cmp_int( int* pa , int* pb ) { // int型用コールバック関数 return *pa - *pb ; } int cmp_double( double* pa , double* pb ) { // double型用コールバック関数 if ( *pa == *pb ) return 0 ; else if ( *pa > *pb ) return 1 ; else return -1 ; } int main() { // C言語の怖さ qsort( a , 4 , sizeof( int ) , // このあたりの引数を書き間違えると (int(*)(void*,void*)) cmp_int ) ; // とんでもない目にあう。 qsort( b , 3 , sizeof( double ) , (int(*)(void*,void*)) cmp_double ) ; }このように、自分が作っておいた関数のポインタを、関数に渡して呼び出してもらう方法は、コールバックと呼ぶ。
JavaScript などの言語では、こういったコールバックを使ったコーディングがよく使われる。// コールバック関数 f を呼び出す関数 function exec_callback( var f ) { f() ; } // コールバックされる関数 foo() function foo() { console.log( "foo()" ) ; } // foo() を実行する。 exec_callback( foo ) ; // 無名関数を実行する。 exec_callback( function() { console.log( "anonymous" ) ; } ) ;
任意のデータを並び替え
class Object { public: virtual void print() const = 0 ; virtual int cmp( Object* ) = 0 ; } ; // 整数データの派生クラス class IntObject : public Object { private: int data ; public: IntObject( int x ) { data = x ; } virtual void print() const { printf( "%d\n" , data ) ; } virtual int cmp( Object* p ) { int pdata = ((IntObject*)p)->data ; // 本当はこのキャストが危険 return data - pdata ; // ↓安全な実装したいなら↓ } // IntObject* pi = dynamic_cast<IntObject*>(p) ; } ; // return pi != NULL ? data - pi->data : 0 ; // 文字列の派生クラス class StringObject : public Object { private: char data[ 100 ] ; public: StringObject( const char* s ) { strcpy( data , s ) ; } virtual void print() const { printf( "%s\n" , data ) ; } virtual int cmp( Object* p ) { char* pdata = ((StringObject*)p)->data ; return strcmp( data , pdata ) ; // 文字列比較関数 } } ; // 実数の派生クラス class DoubleObject : public Object { private: double data ; public: DoubleObject( double x ) { data = x ; } virtual void print() const { printf( "%lf\n" , data ) ; } virtual int cmp( Object* p ) { double pdata = ((DoubleObject*)p)->data ; if ( data == pdata ) return 0 ; else if ( data > pdata ) return 1 ; else return -1 ; } } ; // Objectからの派生クラスでcmp()メソッドを // 持ってさえいれば、どんな型でもソートができる。 void my_sort( Object* array[] , int size ) { for( int i = 0 ; i < size - 1 ; i++ ) { int max = i ; for( int j = i + 1 ; j < size ; j++ ) { if ( array[j]->cmp( array[max] ) > 0 ) max = j ; } Object* tmp = array[i] ; array[i] = array[max] ; array[max] = tmp ; } } // 動作確認 int main() { Object* idata[3] = { new IntObject( 11 ) , new IntObject( 33 ) , new IntObject( 22 ) , } ; Object* sdata[3] = { new StringObject( "abc" ) , new StringObject( "defghi" ) , new StringObject( "c" ) , } ; my_sort( idata , 3 ) ; // 整数のソート for( int i = 0 ; i < 3 ; i++ ) idata[i]->print() ; my_sort( sdata , 3 ) ; // 文字列のソート for( int i = 0 ; i < 3 ; i++ ) sdata[i]->print() ; return 0 ; } ;
このような方式でプログラムを作っておけば、新しいデータ構造がでてきてもソートのプログラムを作らなくても、比較専用の関数 cmp() を書くだけで良い。
ただし、この並び替えの例では、Object* を IntObject* に強制的に型変換している。
また、このプログラムでは、データを保管するために new でポインタを保管し、データの比較をするために仮想関数の呼び出しを行うことから、メモリの使用効率も処理効率でもあまりよくない。
こういう場合、最近の C++ ではテンプレート機能が使われる。
template <typename T> void my_sort( T a[] , int size ) { for( int i = 0 ; i < size - 1 ; i++ ) { int max = i ; for( int j = i + 1 ; j < size ; j++ ) { if ( a[j] > a[max] ) max = j ; } T tmp = a[i] ; a[i] = a[max] ; a[max] = tmp ; } } int main() { int idata[ 5 ] = { 3, 4, 5 , 1 , 2 } ; double fdata[ 4 ] = { 1.23 , 0.1 , 3.4 , 5.6 } ; // typename T = int で int::mysort() が作られる my_sort( idata , 5 ) ; for( int i = 0 ; i < 5 ; i++ ) printf( "%d " , idata[i] ) ; printf( "\n" ) ; // typename T = double で double::mysort() が作られる my_sort( fdata , 4 ) ; for( int i = 0 ; i < 4 ; i++ ) printf( "%lf " , fdata[i] ) ; printf( "\n" ) ; return 0 ; }C++のテンプレート機能は、my_sort( int[] , int ) で呼び出されると、typename T = int で、整数型用の my_sort() の処理が自動的に作られる。同じく、my_sort( double[] , int ) で呼び出されると、typename = double で 実数型用の my_sort() が作られる。
テンプレート機能では、各型用のコードが自動的に複数生成されるという意味では、出来上がったコードがコンパクトという訳ではない。
派生と継承と仮想関数
前回の派生と継承のイメージを改めて記載する。
// 基底クラス class Person { private: char name[ 20 ] ; int age ; public: Person( const char s[] , int x ) : age( x ) { strcpy( name , s ) ; } void print() { printf( "%s %d\n" , name , age ) ; } } ; // 派生クラス(Student は Person から派生) class Student : public Person { private: char dep[ 20 ] ; int grade ; public: Student( const char s[] , int x , const char d[] , int g ) : Person( s , x ) // 基底クラスのコンストラクタ { // 追加された処理 strcpy( dep , d ) ; grade = g ; } void print() { Person::print() ; // 基底クラスPersonで名前と年齢を表示 printf( "- %s %d\n" , dep , grade ) ; } } ; int main() { Person saitoh( "t-saitoh" , 55 ) ; Student yama( "yamada" , 21 , "ES" , 1 ) ; Student nomu( "nomura" , 22 , "PS" , 2 ) ; saitoh.print() ; // 表示 t-saitoh 55 yama.print() ; // 表示 yamada 21 // - ES 1 nomu.print() ; // 表示 nomura 22 return 0 ; // - PS 2 }
このような処理でのデータ構造は、次のようなイメージで表される。
派生クラスでの問題提起
基底クラスのオブジェクトと、派生クラスのオブジェクトを混在してプログラムを記述したらどうなるであろうか?
上記の例では、Person オブジェクトと、Student オブジェクトがあったが、それをひとまとめで扱いたいこともある。
以下の処理では、Person型の saitoh と、Student 型の yama, nomu を、一つの table[] にまとめている。
int main() { Person saitoh( "t-saitoh" , 55 ) ; Student yama( "yamada" , 21 , "ES" , 1 ) ; Student nomu( "nomura" , 22 , "PS" , 2 ) ; Person* table[3] = { &saitoh , &yama , &nomu , } ; for( int i = 0 ; i < 3 ; i++ ) { table[ i ]->print() ; } return 0 ; }
C++では、Personへのポインタの配列に代入する時、Student型ポインタは、その基底クラスへのポインタとしても扱える。ただし、このように記述すると、table[] には、Person クラスのデータして扱われる。
このため、このプログラムを動かすと、以下のように、名前と年齢だけが3人分表示される。
t-saitoh 55 yamada 21 nomura 22
派生した型に応じた処理
上記のプログラムでは、 Person* table[] に、Person*型,Student*型を混在して保存をした。しかし、Person*として呼び出されると、yama のデータを表示しても、所属・学年は表示されない。上記のプログラムで、所属と名前を表示することはできないのだろうか?
// 混在したPersonを表示 for( int i = 0 ; i < 3 ; i++ ) table[i]->print() ; // Student は、所属と名前を表示して欲しい t-saitoh 55 yamada 21 - ES 1 nomura 22 - PS 2
上記のプログラムでは、Person型では、後でStudent型と区別ができないと困るので、Person型に、Person型(=0)なのか、Student型(=1)なのか区別するための type という型の識別番号を追加し、type=1ならば、Student型として扱うようにしてみた。
// 基底クラス class Person { private: int type ; // 型識別情報 char name[ 20 ] ; int age ; public: Person( int tp , const char s[] , int x ) : type( tp ) , age( x ) { strcpy( name , s ) ; } int type_person() { return type ; } void print() { printf( "%s %d\n" , name , age ) ; } } ; // 派生クラス(Student は Person から派生) class Student : public Person { private: char dep[ 20 ] ; int grade ; public: Student( int tp , const char s[] , int x , const char d[] , int g ) : Person( tp , s , x ) // 基底クラスのコンストラクタ { // 追加された処理 strcpy( dep , d ) ; grade = g ; } void print() { Person::print() ; // 基底クラスPersonで名前と年齢を表示 printf( "- %s %d\n" , dep , grade ) ; } } ; int main() { // type=0 は Person 型、type=1は Student 型 Person saitoh( 0 , "t-saitoh" , 55 ) ; Student yama( 1 , "yamada" , 21 , "ES" , 1 ) ; Student nomu( 1 , "nomura" , 22 , "PS" , 2 ) ; Person* table[3] = { &saitoh , &yama , &nomu , } ; for( int i = 0 ; i < 3 ; i++ ) { switch( table[i]->type_person() ) { case 0 : table[i]->print() ; break ; case 1 : // 強制的にStudent*型として print() を呼び出す。 // 最近のC++なら、(static_cast<Student*>(table[i]))->>print() ; ((Student*)table[i])->print() ; break ; } } return 0 ; }
しかし、このプログラムでは、プログラマーがこのデータは、Personなので type=0 で初期化とか、Studentなので type=1 で初期化といったことを記述する必要がある。
また、関数を呼び出す際に、型情報(type)に応じて、その型にふさわしい処理を呼び出すための switch 文が必要になる。
もし、派生したクラスの種類がいくつもあるのなら、(1)型情報の代入は注意深く書かないとバグの元になるし、(2)型に応じた分岐処理は巨大なものになるだろう。実際、オブジェクト指向プログラミングが普及する前の初期の GUI プログラミングでは、巨大な switch 文が問題となっていた。
仮想関数
上記の、型情報の埋め込みと巨大なswitch文の問題の解決策として、C++では仮想関数(Virtual Function)が使える。
型に応じて異なる処理をしたい関数があったら、その関数の前に virtual と書くだけで良い。このような関数を、仮想関数と呼ぶ。
// 基底クラス class Person { private: char name[ 20 ] ; int age ; public: Person( const char s[] , int x ) : age( x ) { strcpy( name , s ) ; } virtual void print() { printf( "%s %d\n" , name , age ) ; } } ; // 派生クラス(Student は Person から派生) class Student : public Person { private: char dep[ 20 ] ; int grade ; public: Student( const char s[] , int x , const char d[] , int g ) : Person( s , x ) // 基底クラスのコンストラクタ { // 追加された処理 strcpy( dep , d ) ; grade = g ; } virtual void print() { Person::print() ; // 基底クラスPersonで名前と年齢を表示 printf( "- %s %d\n" , dep , grade ) ; } } ; int main() { // type=0 は Person 型、type=1は Student 型 Person saitoh( "t-saitoh" , 55 ) ; Student yama( "yamada" , 21 , "ES" , 1 ) ; Student nomu( "nomura" , 22 , "PS" , 2 ) ; Person* table[3] = { &saitoh , &yama , &nomu , } ; for( int i = 0 ; i < 3 ; i++ ) { table[i]->print() ; } return 0 ; }
クラスの中に仮想関数が使われると、C++ では、プログラム上で見えないが、何らかの型情報をオブジェクトの中に保存してくれる。
また、仮想関数が呼び出されると、その型情報を元に、ふさわしい関数を自動的に呼び出してくれる。このため、プログラムも table[i]->print() といった極めて簡単に記述できるようになる。
関数ポインタ
仮想関数の仕組みを実現するためには、関数ポインタが使われる。
以下の例では、返り値=int,引数(int,int)の関数( int(*)(int,int) )へのポインタfpに、最初はaddが代入され、(*fp)(3,4) により、7が求まる。
int add( int a , int b ) { return a + b ; } int mul( int a , int b ) { return a * b ; } int main() { int (*fp)( int , int ) ; fp = add ; printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3+4=7 fp = mul ; printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3*4=12 int (*ftable[2])( int , int ) = { add , mul , } ; for( int i = 0 ; i < 2 ; i++ ) printf( "%d\n" , (*ftable[i])( 3 , 4 ) ) ; return 0 ; }仮想関数を使うクラスが宣言されると、一般的にそのコンストラクタでは、各クラス毎の仮想関数へのポインタのテーブルが型情報として保存されるのが一般的。仮想関数の呼び出しでは、仮想関数へのポインタを使って処理を呼び出す。このため効率よく仮想関数を動かすことができる。
仮想関数の実装方法
仮想関数の一般的な実装方法としては、仮想関数を持つオブジェクトには型情報として仮想関数へのポインタテーブルへのポインタを保存する。
iPadのパスワードリセット
「貸出していた iPad が返却されたけど、パスワードが分からない…」との相談を受け、パスワードのリセット作業をお手伝い。
その方も、Web記事をみて試したけどダメだった様子。iPad 起動時に○○キーと○○キーを押しながら…との説明だけど、タブレットのケースのおかげで、押しづらい状況。まずはケースから取り出して、作業。それに、合わせ押すキーが機種によって違うので iPhone7, iPhone8, それ以降とかいろいろ試した。
途中、iMyFone lockwiper というソフト(有償)を使うと簡単と書いてあったので、ページを見ると「無料ダウンロード」と書いてあるし、お試し版が使えるかと試してみた。ただ、OSのイメージダウンロードとか時間かかるし、「イメージ解凍中」とか出てずっとまっても動かず、クリックしたら動き出す。ボタン「イメージ解凍開始」って表示にしろよ…。んで、長々と待っていざイメージ書き込み…とおもったら、この時点で「有償ソフトだから登録してね」の表示となる。そーゆー大切なことは最初に出せよ。時間の無駄だった。
自分自身の端末では、パスワード忘れでフルリセットしたことがないので、面倒だったとはいえいい経験だったかな。
再帰処理時間の見積もりとポインタ操作
前回の授業では、再帰処理やソートアルゴリズムの処理時間の見積もりについて説明を行った。
ソート処理の見積もり
この際の練習問題の1つめは、「再帰方程式の理解度確認の回答」にて解説を示す。
最後の練習問題はここで説明を行う。
選択法とクイックソートの処理時間の比較
例として、データ数N=20件で、選択法なら10msec、クイックソートで20msecかかったとする。
これより、選択法の処理時間を、クイックソートの処理時間を
、とすると、
よって、
# ここはlogの底は10の方が計算が楽かな
処理時間が逆転するときのデータ件数は、2つのグラフの交点を求めることになるので、
より、以下の式を解いた答えとなる。これは通常の方程式では解けないが電卓で求めると、N=53.1 ほどかな。(2020/05/26) 真面目に解いたら N=53.017 だった。
実際にも、クイックソートを再帰呼び出しだけでプログラムを書くと、データ件数が少ない場合は選択法などのアルゴリズムの方が処理時間が早い。このため、C言語などの組み込み関数の qsort() などは、データ件数が20とか30とか一定数を下回ったら、再帰を行わずに選択法でソートを行うのが一般的である。
ポインタ処理
ここからは、次のメモリの消費を考慮したプログラムの説明を行うが、ポインタの処理に慣れない人が多いので、ポインタを使ったプログラミングについて説明を行う。
値渡し(call by value)
// 値渡しのプログラム void foo( int x ) { // x は局所変数(仮引数は呼出時に // 対応する実引数で初期化される。 x++ ; printf( "%d¥n" , x ) ; } void main() { int a = 123 ; foo( a ) ; // 124 // 処理後も main::a は 123 のまま。 foo( a ) ; // 124 }
このプログラムでは、aの値は変化せずに、124,124 が表示される。
言い方を変えるなら、呼び出し側main() では、関数の foo() の処理の影響を受けない。このように、関数には仮引数の値を渡すことを、値渡し(call by value)と言う。
でも、プログラムによっては、124,125 と変化して欲しい場合もある。
どのように記述すべきだろうか?
// 大域変数を使う場合 int x ; void foo() { x++ ; printf( "%d¥n" , x ) ; } void main() { x = 123 ; foo() ; // 124 foo() ; // 125 }
しかし、このプログラムは大域変数を使うために、間違いを引き起こしやすい。
// 大域変数が原因で予想外の挙動をしめす簡単な例 int i ; void foo() { for( i = 0 ; i < 2 ; i++ ) printf( "A" ) ; } void main() { for( i = 0 ; i < 3 ; i++ ) // このプログラムでは、AA AA AA と foo() ; // 表示されない。 }
ポインタ渡し(call by pointer)
C言語で引数を通して、呼び出し側の値を変化して欲しい場合は、(引数を経由して関数の副作用を受け取るには)、変更して欲しい変数のアドレスを渡し、関数側では、ポインタ変数を使って受け取った変数のアドレスの示す場所の値を操作する。このような値の受け渡し方法は、ポインタ渡し(call by pointer)と呼ぶ。
// ポインタ渡しのプログラム void foo( int* p ) { // p はポインタ (*p)++ ; printf( "%d¥n" , *p ) ; } void main() { int a = 123 ; foo( &a ) ; // 124 // 処理後 main::a は 124 に増えている。 foo( &a ) ; // 124 } // さらに125と増える。
C言語では、関数から結果をもらうには、通常は関数の返り値を使う。しかし、返り値は1つの値しか受け取ることができないので、上記のようにポインタを使って、呼び出し側は:結果を入れてもらう場所を伝え、関数側は:指定されたアドレスに結果を書む。
変数の寿命とスコープ
変数の管理では、変数の寿命とスコープの理解が重要。
静的変数:変数は、プログラムの起動時に初期化、プログラムの終了時に廃棄。
動的変数:変数は、関数に入るときに初期化、関数を抜けるときに廃棄。
もしくは、ブロックに入るときに初期化、ブロックを抜けるときに廃棄。
大域変数:大域変数は、プログラム全体で参照できる。
局所変数:関数の中 or そのブロックの中でのみ参照できる。
ブロックの中で変数が宣言されると、そのブロックの外の変数とは別の入れ物となる。そのブロックの中では、新たに宣言された変数が使われる。
int i = 111 ; // 静的大域変数 void foo() { int i = 222 ; // 動的局所変数 i++ ; printf( "%d\n" , i ) ; } void bar() { static int i = 333 ; // 静的局所変数(プログラム起動時に初期化) i++ ; printf( "%d\n" , i ) ; } void hoge( int x ) { // x: 動的局所変数(値渡し) x++ ; printf( "%d\n" , x ) ; } void fuga( int* p ) { // p: 動的局所変数(ポインタ渡し) (*p)++ ; printf( "%d\n" , (*p) ) ; } int main() { int i = 444 , j = 555 ; foo() ; // 223 (副作用ナシ) bar() ; // 334 hoge( i ) ; // 445 (副作用ナシ) fuga( &j ) ; // 556 printf( "%d\n" , i ) ; foo() ; // 223 (副作用ナシ) bar() ; // 335 hoge( i ) ; // 445 (副作用ナシ) fuga( &j ) ; // 557 printf( "%d\n" , i ) ; // 444 for( int i = 0 ; i < 2 ; i++ ) { // (a) // A:0 printf( "A:%d\n" , i ) ; // B:0 for( int i = 0 ; i < 2 ; i++ ) { // (b) // B:1 printf( "B:%d\n" , i ) ; // A:1 } // B:0 } // B:1 printf( "%d\n" , i ) ; // 333 ← 要注意C言語のバージョンによっては // 2 になる場合あり。(a)の変数iの値 return 0 ; }