ホーム » 2021 » 7月

月別アーカイブ: 7月 2021

2021年7月
 123
45678910
11121314151617
18192021222324
25262728293031

検索・リンク

集合とリスト処理

リスト構造は、必要に応じてメモリを確保するデータ構造であり、データ件数に依存しないプログラム が記述できる。その応用として、集合処理を考えてみる。集合処理の記述には、2進数を使った方式リストを用いた方法が一般的である。以下にその処理について示す。

bit演算子

2進数を用いた集合処理を説明する前に、2進数を使った計算に必要なbit演算子について復習してみる。

bit演算子 計算の意味 関連知識
& bit AND 3 & 5
0011)2 & 0101)2= 0001)2
論理演算子
if ( a == 1 && b == 2 ) …
| bit OR 3 | 5
0011)2 | 0101)2= 0111)2
論理演算子
if ( a == 1 || b == 2 ) …
~ bit NOT ~5
~ 00..00,0101)2= 11..11,1010)2
論理否定演算子
if ( !a == 1 ) …
^ bit EXOR 3 ^ 5
0011)2 ^ 0101)2= 0110)2
<< bit 左シフト 3 << 2
0011)2 << 2 = 001100)2
x << y は x * 2y と同じ
>> bit 右シフト 12 >> 2
1100)2 >> 2 = 11)2
x >> y は x / 2y と同じ
#include <stdio.h>

int main() {
   // bit演算子と論理演算子
   printf( "%d¥n" , 12 &  5 ) ;  // 1100 & 0101 = 0100 よって 4が表示される
   printf( "%d¥n" , 12 && 0 ) ;  // 0が表示 論理演算子とbit演算子の違い
   printf( "%d¥n" , 12 |  5 ) ;  // 1100 | 0101 = 1101 よって 13が表示される
   printf( "%d¥n" , 12 || 0 ) ;  // 1が表示 
   // シフト演算子
   printf( "%d¥n" ,  3 << 2 ) ;  // 12が表示
   printf( "%d¥n" , 12 >> 2 ) ;  // 3が表示
   // おまけ
   printf( "%d¥n" , ~(unsigned)12 + 1 ) ;  // 2の補数(NOT 12 + 1) = -12
   return 0 ;
}

2進数を用いた集合計算

リストによる集合の前に、もっと簡単な集合処理を考える。

最も簡単な方法は、要素に含まれる=1 か 含まれない=0 を配列に覚える方法であろう。数字Nが集合に含まれる場合は、配列[N]に1を覚えるものとする。この方法で積集合などを記述した例を以下に示す。ただし、自分で考える練習として穴埋めを含むので注意。

しかし、上述のプログラムでは、要素に含まれる/含まれないという1bitの情報を、整数型で保存しているためメモリの無駄である。

データ件数の上限が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。

2進数を用いた集合計算

扱うデータ件数が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。

以下のプログラムは、0〜31の数字を2進数の各ビットに対応付けし、 ba = {1,2,3} , bb = {2,4,6} , bc= {4,6,9} を要素として持つ集合で、ba bb , bb bc , ba  bc の計算を行う例である。

// 符号なし整数を uint_t とする。
typedef unsigned int uint_t ;

// uint_tのbit数
#define UINT_BITS (sizeof( uint_t ) * 8)

// 集合の内容を表示
void bit_print( uint_t x ) {
   for( int i = 0 ; i < UINT_BITS ; i++ )
      if ( (x & (1 << i)) != 0 )
         printf( "%d " , i ) ;
   printf( "\n" ) ;
}
void main() {     // 98,7654,3210
   // ba = {1,2,3} = 00,0000,1110
   uint_t ba = (1<<1) | (1<<2) | (1<<3) ;
   // bb = {2,4,6} = 00,0101,0100
   uint_t bb = (1<<2) | (1<<4) | (1<<6) ;
   // bc = {4,6,9} = 10,0101,0000
   uint_t bc = (1<<4) | (1<<6) | (1<<9) ;

   // 集合積(bit AND)
   bit_print( ba & bb ) ; // ba ∩ bb = {2}                 
   bit_print( bb & bc ) ; // bb ∩ bc = {4,6}
   // 集合和(bit OR)
   bit_print( ba | bc ) ; // ba ∪ bc = {1,2,3,4,6,9}
}

有名なものとして、エラトステネスのふるいによる素数計算を2進数を用いて記述してみる。このアルゴリズムでは、各bitを整数に対応付けし、素数で無いと判断した2進数の各桁に1の目印をつけていく方式である。

uint_t prime = 0 ; // 初期値=すべての数は素数とする。

void filter() {
   // 倍数に非素数の目印をつける
   for( int i = 2 ; i < UINT_BITS ; i++ ) {
      if ( (prime & (1 << i)) == 0 ) {
         // iの倍数には、非素数の目印(1)をつける
         for( int j = 2*i ; j < UINT_BITS ; j += i )
            prime |= (1 << j) ;
      }
   }
   // 非素数の目印の無い値を出力
   for( int i = 2 ; i < UINT_BITS ; i++ ) {
      // 目印のついていない数は素数
      if ( (prime & (1 << i)) == 0 )
         printf( "%d\n" , i ) ;
   }
}

リスト処理による積集合

前述の方法は、リストに含まれる/含まれないを、2進数の0/1で表現する方式である。しかし、2進数であれば、unsigned int で 32要素、unsigned long long int で 64 要素が上限となってしまう。 (32bitコンピュータ,gccの場合)

しかし、リスト構造であれば、リストの要素として扱うことで、要素件数は自由に扱える。また、今までの授業で説明してきた cons() などを使って表現すれば、簡単なプログラムでリストの処理が記述できる。

// 先週までに説明してきたリスト構造と補助関数
struct List {
   int     data ;
   struct List* next ;
} ;
struct List* cons( int x , struct List* n ) {
   struct List* ans ;
   ans = (struct List*)malloc( sizeof( struct List ) ) ;
   if ( ans != NULL ) {
      ans->data = x ;
      ans->next = n ;
   }
   return ans ;
}
void print( struct List* p ) {
   for( ; p != NULL ; p = p->next ) {
      printf( "%d " , p->data ) ;
   }
   printf( "\n" ) ;
}
int find( struct List* p , int key ) {
   for( ; p != NULL ; p = p->next )
      if ( p->data == key )
         return 1 ;
   return 0 ;
}

例えば、積集合(a ∩ b)を求めるのであれば、リストa の各要素が、リストb の中に含まれるか find 関数でチェックし、 両方に含まれたものだけを、ans に加えていく…という考えでプログラムを作ると以下のようになる。

// 集合積の計算
struct List* set_prod( struct List* a , struct List* b ) {
   struct List* ans = NULL ;
   for( ; a != NULL ; a = a->next ) {
      // aの要素がbにも含まれていたら、ansに加える
      if ( find( b , a->data ) )
         ans = cons( a->data , ans ) ;
   }
   return ans ;
}
void main() {
   struct List* a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ;
   struct List* b = cons( 2, cons( 4, cons( 6, NULL ) ) ) ;
   struct List* c = cons( 4, cons( 6, cons( 9, NULL ) ) ) ;
   print( set_prod( a , b ) ) ;
   print( set_prod( b , c ) ) ;
}

例題として、和集合差集合などを考えてみよう。

リストの共有と削除の問題

リスト処理では、mallocを使うが、メモリリークをさせないためには、使用後のリストの廃棄は重要である。リストの全要素を捨てる処理であれば、以下のようになるであろう。

void list_free( struct List* p ) {
   while( p != NULL ) {
      struct List* d = p ;
      p = p->next ;
      free( d ) ; // 順序に注意
   }
}

一方、前説明の和集合(a ∪ b)のプログラムを以下のように作った場合、list_freeの処理は問題となる。

// 集合和
struct List* set_union( struct List*a, struct List*b ) {
   struct List* ans = b ;
   for( ; a != NULL ; a = a->next )
      if ( !find( b , a->data ) )
         ans = cons( a->data , ans ) ;
   return ans ;
}
void main() {
   struct List*a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ;
   struct List*b = cons( 2, cons( 3, cons( 4, NULL ) ) ) ;
   struct List*c = set_union( a , b ) ;
   // a,b,cを使った処理
   // 処理が終わったので、a,b,cを捨てる
   list_free( a ) ;
   list_free( b ) ;
   list_free( c ) ;
   // c = { 1 , (bのリスト) }
   // (b)の部分は先のlist_free(b)で解放済み
}

このような、リストb,リストcで共有されている部分があると、データの廃棄処理をどのように記述すべきなのか、問題となる。

これらの解決方法としては、(1) set_union() の最初で、ans=b となっている部分を別にコピーしておく、(2) 参照カウンタ法を用いる、(3) ガベージコレクタのある言語を用いる…などがある。(2),(3)は後期授業で改めて解説を行う。

// 同じ要素を含む、新しいリストを作る
struct List* copy( struct List*p ) {
   struct List*ans = NULL ;
   for( ; p != NULL ; p = p->next )
      ans = cons( p->data , ans ) ;
   return ans ;
}
struct List* set_union( struct List*a, struct List* b ) {
   struct List* ans = copy( b ) ;
   // この後は自分で考えよう。
}

理解確認

  • 2進数を用いた集合処理は、どのように行うか?
  • リスト構造を用いた集合処理は、どのように行うか?
  • 積集合(A ∩ B)、和集合(A ∪ B)、差集合(A – B) の処理を記述せよ。

差分とフィードバック制御

情報制御基礎の授業を通して、入力値を制御するため、コンピュータを使う場合の数値処理の基礎的な話として、信号の平滑化を説明してきたので、最後に差分について説明をする。また、実際には、入力値を制御に利用する一般的な構成のフィードバック制御について説明する。

変化の検出

例えば、以下のような若干のノイズが混ざった入力信号が与えられたとする。この波形で「大きな山が何ヶ所ありますか?」と聞かれたら、いくつと答えるべきであろうか?山の判断方法は色々あるが、4カ所という答えは、1つの見方であろう。では、この4カ所という判断はどうすればいいだろうか?

こういった山の数を数えるのであれば、一定値より高いか低いか…という判断方法もあるだろう。この絵であれば、15ステップ目、32ステップ目付近は、100を越えていることで、2つの山と判断できるだろう。

こういった予め決めておいた値より「上か?/下か?」で判断するときの基準値は、しきい値(閾値:threshold)と呼ぶ。

しかし、この閾値では、40ステップ目から50ステップ目も100を越えており、以下のようなプログラムを書いたら、40ステップ目~50ステップ目すべてをカウントしてしまう。

#define THRESHOLD 100
int x[ 100 ] = {
   // 波形のデータが入っているとする。
} ;

int count = 0 ;
for( int i = 0 ; i < 100 ; i++ ) {
   if ( x[i] >= THRESHOLD )
      count++ ;
}

また、65ステップ目の小さな山も1個とカウントしてしまう。

この問題を避けるために、閾値を130にすると、今度は最初の2つの山をカウントできない。どうすれば、山の数をうまくカウントできるのだろうか?

差分を求める

前述のような問題で山の数を数える方法を考えていたが、数学で山を見つける時には、何をするだろうか?

数学なら、山や谷の頂点を求めるのならば、微分して変化量が0となる場所を求めることで、極大値・極小値を求めるだろう。そこで、山を見つけるために入力値の変化量を求めてみよう。

表計算ソフトで差分を計算するのであれば、セルに図のような式を入力すればいいであろう。このようなデータ点で前の値との差差分と呼ぶ。数学であれば、微分に相当する。

このグラフを見ると、波形が大きく増加する部分で、差分が大きな正の値となる。さらに波形が大きく減少する部分で差分が負の大きな値となる。特にこのデータの場合、山と判断したい部分は差分が20以上の値の部分と定義することも考えられる。

#define TH_DIFF 20
int x[ 100 ] = {
   // 波形のデータが入っているとする。
} ;

int count = 0 ;
for( int i = 0 ; i < 100 ; i++ ) {
   if ( x[i] - x[i-1] >= TH_DIFF
        && x[i+1] - x[i] <= -TH_DIFF )
      count++ ;
}

しかし、このプログラムでは、山の数をうまくカウントしてくれない。うまく、山の数を数えるためには、差分の値を山と判断するための閾値(この場合は20)を調整することになるだろう。

移動平均との差

前回の講義で示したデータの例で、移動平均を取ると分かる事例ということで、船につけられた加速度センサーで、長い周期の波による船の揺れと、短い周期のエンジンによる振動があったとき、エンジンの振動を移動平均で取り除くことができるという事例を示した。

これを逆手にとれば、元の信号と移動平均の差を取れば、エンジンの振動だけを取り出すことも可能となる。以下は、前の事例で、前後5stepの移動平均(水色線)と元信号(青線)の差をとったものが緑線となっている。このような方法をとれば、元信号の短い周期の変動を抽出することができる。

制御工学の概要

以下に、制御工学ではどのようなことを行うのか、概要を述べる。
ここで紹介する制御理論は、古典制御理論と呼ばれる。

制御工学では、入力値と、何らかの処理を施し出力値が得られるシステムで、どのように制御するかを考える。

例えば、電気ポットの温度制御をする場合、設定温度の値を入力値とし、何らかの処理を行い、出力となるヒーターの電流を制御し、最終的には温度が測定される。ヒーターは、設定温度と温度計の値の差に応じて電流量を変化させる。このように一般的な制御では、最終的な温度が入力に戻っている。このように目標値に近づけるために、目標値との差に応じて制御することをフィードバック制御という。


制御の仕方には様々な方法があるが、 がとある時間で0からYに変化した場合を考える。入力と出力で制御された波形の例を示す。

この波形では、黒のように入力値が変化した場合、それに追いつこうと出力が変化する。(1)理想的には、速やかに追いつく赤のように変化したい。しかし、(2)慎重に制御をする人なら、変化への制動が大きい過制動(青点線)となり、目標値に追いつくまでに時間がかかる。(3)一方、すこしでもずれたら直そうとする人なら、時間的には速い反応ができるかもしれないが、目標値を追い越したり、増えすぎ分を減らしすぎたりして脈動する過制御(赤点線)となるかもしれない。

PID制御

目標値、出力、ずれ(偏差)、制御量とした時、基本的なフィードバック制御として偏差の使い方によってP動作,I動作,D動作がある。参考 Wikipedia PID制御

比例制御(P制御)

偏差に比例した制御を行う方式(を比例ゲインと呼ぶ)

今年のコロナ騒動を例にとるならば、比例制御は、今日の感染者数y(t)と目標としたい感染者数x(t)の差に応じて、対策の強さu(t)を決めるようなもの。

積分制御(I制御)

偏差のある状態が長い時間続く場合、入力値の変化を大きくすることで目標値に近づけるための制御。(は積分ゲイン)

積分制御は、目標の感染者数x(t)を感染者数y(t)が超えた累積患者数に応じて、対策を決めるようなもの。
移動平均は、一定範囲の値の和(を範囲のデータ数で割ったもの)であり、積分制御は移動平均の値に応じて制御するとみなすこともできる。

微分制御(D制御)

急激な出力値の変化が起こった場合、その変化の大きさに応じて妨げようとする制御。(は微分ゲイン)

微分制御は、目標数と感染者数の差が、前日よりどのぐらい増えたか(患者の増減の量:変化量)に応じて、対策を決めるようなもの。

PID制御

上記のI制御やD制御だけでは、安定させることが難しいので、これらを組み合わせたPID制御を行う。

この中で、の値は、制御が最も安定するように調整を行うものであり、数値シミュレーションや、ステップ応答を与えた時の時間的変化を測定して調整を行う。

スタックと待ち行列

前回の授業では、リストの先頭にデータを挿入する処理と、末尾に追加する処理について説明したが、この応用について説明する。

計算処理中に一時的なデータの保存として、stackとqueueがよく利用される。それを配列を使って記述したり、任意の大きさにできるリストを用いて記述することを示す。

スタック

配列を用いたスタック

一時的な値の記憶によく利用されるスタック(stack)は、データの覚え方の特徴からLIFO( Last In First out )とも呼ばれる。配列を使って記述すると以下のようになるであろう。

#define STACK_SIZE 32
int stack[ STACK_SIZE ] ;
int sp = 0 ;

void push( int x ) { // データをスタックの一番上に積む
    stack[ sp++ ] = x ;
}
int pop() { // スタックの一番うえのデータを取り出す
    return stack[ --sp ] ;
}
void main() {
    push( 1 ) ; push( 2 ) ; push( 3 ) ;
    printf( "%d\n" , pop() ) ; // 3
    printf( "%d\n" , pop() ) ; // 2
    printf( "%d\n" , pop() ) ; // 1
}

++,–の前置型と後置型の違い

// 後置インクリメント演算子
int i = 100 ;
printf( "%d" , i++ ) ;
// これは、
printf( "%d" , i ) ;
i++ ;
// と同じ。100が表示された後、101になる。

// 前置インクリメント演算子
int i = 100 ;
printf( "%d" , ++i ) ;
//   これは、
i++ ;
printf( "%d" , i ) ;
// と同じ。101になった後、101を表示。

リスト構造を用いたスタック

しかし、この中にSTACK_SIZE以上のデータは貯えられない。同じ処理をリストを使って記述すれば、配列サイズの上限を気にすることなく使うことができるだろう。では、リスト構造を使ってスタックの処理を記述してみる。

struct List* stack = NULL ;

void push( int x ) { // リスト先頭に挿入
    stack = cons( x , stack ) ;
}
int pop() { // リスト先頭を取り出す
    int ans = stack->data ;
    struct List* d = stack ;
    stack = stack->next ;
    free( d ) ;
    return ans ;
}

キュー(QUEUE)

2つの処理の間でデータを受け渡す際に、その間に入って一時的にデータを蓄えるためには、待ち行列(キュー:queue)がよく利用される。 データの覚え方の特徴からFIFO(First In First Out)とも呼ばれる。

配列を用いたQUEUE / リングバッファ

配列にデータを入れる場所(wp)と取り出す場所のポインタ(rp)を使って蓄えれば良いが、配列サイズを超えることができないので、データを取り出したあとの場所を循環して用いるリングバッファは以下のようなコードで示される。

#define QUEUE_SIZE 32
int queue[ QUEUE_SIZE ] ;
int wp = 0 ; // write pointer(書き込み用)
int rp = 0 ; // read  pointer(読み出し用)

void put( int x ) { // 書き込んで後ろ(次)に移動
    queue[ wp++ ] = x ;
    if ( wp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        wp = 0 ;
}
int get() { // 読み出して後ろ(次)に移動
    int ans = queue[ rp++ ] ;
    if ( rp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        rp = 0 ;
    return ans ;
}
void main() {
    put( 1 ) ; put( 2 ) ; put( 3 ) ;
    printf( "%d\n" , get() ) ; // 1
    printf( "%d\n" , get() ) ; // 2
    printf( "%d\n" , get() ) ; // 3
}

このようなデータ構造も、get() の実行が滞るようであれば、wp が rp に循環して追いついてしまう。このため、上記コードはまだエラー対策としては不十分である。どのようにすべきか?

リスト構造を用いたQUEUE

前述のリングバッファもget()しないまま、配列上限を越えてput()を続けることはできない。

この配列サイズの上限問題を解決したいのであれば、リスト構造を使って解決することもできる。この場合のプログラムは、以下のようになるだろう。

struct List* queue = NULL ;
struct List** tail = &queue ;

void put( int x ) { // リスト末尾に追加
    *tail = cons( x , NULL ) ;
    tail = &( (*tail)->next ) ;
}
int get() { // リスト先頭から取り出す
    int ans = queue->data ;
    struct List* d = queue ;
    queue = queue->next ;
    free( d ) ;
    return ans ;
}

ただし、上記のプログラムは、データ格納後にget()で全データを取り出してしまうと、tail ポインタが正しい位置になっていないため、おかしな状態になってしまう。
また、このプログラムでは、rp,wp の2つのポインタで管理することになるが、 2重管理を防ぐために、リストの先頭と末尾を1つのセルで管理する循環リストが使われることが多い。

理解確認

  • 配列を用いたスタック・待ち行列は、どのような処理か?図などを用いて説明せよ。
  • リスト構造を用いたスタック・待ち行列について、図などを用いて説明せよ。
  • スタックや待ち行列を、配列でなくリスト構造を用いることで、どういう利点があるか?欠点があるか説明せよ。

移動平均の処理

前回の授業で説明したようなA/D変換した数値データを読み取った場合、どのようなことが発生するか考える。

例えば、以下に示すような測定値があったとする。

このデータの一部をグラフ化してみると、次のような波形であった。

この波形をみると、大きく見ればsinカーブだが、細かい点を見るとデータにブレがある。

誤差の原因

このような測定結果が得られた場合、本来コンピュータで処理したいデータは何であろうか?

原因は様々なものが考えられるが、

  1. 回路のノイズ対策が不十分で、外部の電気的な影響が混入。
    オシロスコープで周期を図ると、60Hz なら、交流電源だったり…
  2. D/A 変換を行う場合には、量子化誤差かもしれない。

例えば、最初の波形が、加速度センサーの値であったとして、船の上で揺れているために、大きな周期で加速度が変化しているかもしれない。一方で、船自体がエンジンによる揺れで加速度が変化しているかもしれない。

船の中で波の揺れと、エンジンの揺れが観測されている加速度センサーの情報で、船の揺れの大きさ・揺れの周期を知りたい場合、どうすればいいだろうか?

移動平均を計算してみる

このデータを見ると、10個のデータまでの間で、波形が上下に変動している。船の揺れとエンジンの揺れが原因であれば、10個ぐらいのデータのゆらぎが、エンジンによる揺れと考えられる。では、この10個ぐらいの範囲で値が上下の影響を減らしたければ、どうすればいいか?一番簡単な方法は、前後10個のデータで平均を取ればいいだろう。増減する値を加えれば、プラスの部分とマイナスの部分の値が相殺されて0に近くはず。そこでは、Excel で前後データの平均をとってみよう。

Excelで前後11点の平均を求める式をセルに入れる

青線:元波形データ(B列)、赤線:前後11点の平均(C列)

このように、データの前後の決められた範囲の平均を平均する処理は、移動平均(単純移動平均)と呼ぶ。

時間tにおけるデータをとした場合、前後5点の移動平均は、以下のような式で表せるだろう。

単純移動平均

単純移動平均は、時刻tの平均を、その前後のデータで平均を求めた。この方式は、実際には与えられた波形のデータを全部記録した後に、単純移動平均をとる場合に有効である。

しかし、時々刻々変化する測定値の平均をその都度使うことを考えると、上記の方法は、未来の測定値を使っていることから、現実的ではない。

// 単純移動平均(未来の値も使う)
#define NS 3
int x[ SIZE ] ; // 入力値
int y[ SIZE ] ; // 出力値
for( int t = NS ; t < SIZE-NS ; t++ ) {
   int s = 0 ;
   for( int i = -NS ; i <= +NS ; i++ ) // 2*NS+1回の繰り返し
      s += x[t+i] ;
   y[t] = s / (2*NS + 1) ;
}

過去の値だけを使った移動平均

そこで、過去の値だけで移動平均をとることも考えられる。

この、単純移動平均と、過去の値だけを使う単純移動平均を、適当な測定値に対して適用した場合のグラフの変化を Excel によってシミュレーションした結果を以下に示す。

しかし、このグラフを見ると、波形後半の部分に注目するとよく分かるが、過去の値だけを使った移動平均では、測定値が立ち上がったのを追いかけて値が増えていく。これでは移動平均は時間的な遅れとなってしまう。

// 未来の値を使わない単純移動平均
for( int t = NS ; t < SIZE ; t++ ) {
   int s = 0 ;
   for( int i = 0 ; i <= NS ; i++ ) // NS+1回の繰り返し
      s += x[t-i] ;
   y[t] = s / (NS+1) ;
}こ

コロナ感染者数のデータの見せ方

最近は、コロナ感染者数の増減のグラフを見る機会が多い。例えば、以下のようなグラフ(神奈川県のデータを引用)を見ると、新規感染者数は青の棒グラフで示されている。しかし、土日の検査が月曜に計上されたりするため、青の棒グラフは週ごとに増減があって分かりにくいため、移動平均の値が合わせてオレンジ色の折れ線グラフで表示されている。しかし、オレンジ色のグラフは、青のグラフより少し右にずれていると思いませんか?

これは、移動平均といっても過去7日間の平均をグラフ化しているため、数日分だけ右にずれているように見えている。ずれが無いように見せたいのなら、3日前から3日後のデータの移動平均であれば、ずれは無くなると思われる。

加重移動平均

過去の値を使った移動平均では遅れが発生する。でも、平均を取る際に、「n回前の値」と「現在の値」を考えた時、「その瞬間の平均値」は「現在の値」の方が近い値のはず。であれば、平均を取る時に、「n回前の値は少なめ」「現在の値は多め」に比重をかけて加算する方法がある。

for( int t = 3 ; t < SIZE ; t++ ) {
   // 数個の移動平均だし、
   // ループを使わずに書いてみる。 
   int s = x[t]   * 3   // 現在の値は大きい重み
         + x[t-1] * 2   // 1つ前の値
         + x[t-2] * 1 ; // 2つ前の値(重みは最小)
   y[t] = s / (3+2+1) ;
}

この様に、過去に遡るにつれ、平均をとる比重を直線的に小さくしながら移動平均をとる方法は、加重移動平均と呼ばれる。以下にその変化をExcelでシミュレーションしたものを示す。

指数移動平均

ここまで説明してきた、単純移動平均や、加重移動平均は、平均をとる範囲の「過去の値」を記憶しておく必要がある。広い時間にわたる移動平均をとる場合は、それに応じてメモリも必要となる。これは、組み込み型の小型コンピュータであれば、メモリが足りず平均処理ができない場合もでてくる。

そこで、荷重移動平均の重みを、は、100%,は50%,は25%… というように、過去に遡るにつれ、半分にして平均をとる。

しかし、以降の項で、 を使うと以下のように書き換えることができる。

// 指数移動平均は、プログラムがシンプル
//  1つ前の平均y[t-1]を覚えるだけでいい。
for( int t = 1 ; t < SIZE ; t++ ) {
   y[t] = ( x[t] + y[t-1] ) / 2 ;
}

この方法であれば、直前の平均値を記録しておくだけで良い。このような移動平均を、指数移動平均と呼ぶ。

ここで示した指数移動平均は、過去を遡るにつれとなっているが、これをさらに一般化した指数移動平均は、以下の式で示される。前述の移動平均は、とみなすことができる。

#define ALPHA 0.5
for( int t = 1 ; t < SIZE ; t++ ) {
    y[t] = ALPHA * x[t] + (1.0 - ALPHA) * y[t-1] ;
}

以下のプログラムは、うまく動かない。理由を説明せよ。

#define RVA 4
for( int t = 1 ; t < SIZE ; t++ ) {
   // 以下はy[t]は全部ゼロになる。
   y[t] = 1/RVA * x[t] + (1.0 - 1/RVA) * y[t-1] ;

   // 以下は、整数型演算だけで、正しく動くだろう。
   // y[t] = ( x[t] + (RVA-1) * y[t-1] ) / RVA ;
}

理解度確認のための小レポート

上記の移動平均の理解のために、以下の資料(講義では印刷資料を配布)の表の中を、電卓などを使って計算せよ。
計算したら、その結果をグラフの中にプロットし、どういった波形となるか確認し、レポートとして提出すること。

この課題は、こちらの Teams フォルダに提出してください。

在室確認をBluetoothに変更

自分の教員室前には、在室状況や授業や会議で不在なのが分かるように、LEDの表示器を設置してある。

でも、在室しているかを、スマホへの ping で実装していたけど、実験室の WiFi をメッシュ機能対応のものに変えた影響か、別部屋の WiFi を掴んだまま。そのため、不在表示になっているようで「不在と表示されてますが?」と学生が来ることが増えた。

仕方がないので、安い Bluetooth LE に対応したドングルを自室サーバに追加し、Bluetooth で確認する方法に変更。

$ /usr/bin/sudo /usr/bin/l2ping -c 1 11:22:33:44:55:66

リストへの追加処理

最初のリスト生成の説明では、補助関数 cons を用いて、直接リストを生成していた。
しかし、実際にはデータを入力しながらの処理となるであろう。

最も単純なリスト先頭への挿入

struct List {
   int          data ;
   struct List* next ;
} ;

// 保存するリストの先頭
struct List* top = NULL ;

void print( struct List* p ) {
   for( ; p != NULL ;  p = p->next )
      //  ~~~~~~~~~(A)     ~~~~~~~(B)
      printf( "%d " ,  p->data ) ;
           // ~~~~~(C) ~~~~~~~(D)
   printf( "¥n" ) ;
}//~~~~~~~~~~~~~~(E)
int main() {
   int x ;
   while( scanf( "%d" , &x ) == 1 ) {
      //  ~~~~~~~~~~~~~~~~~~(F)
      top = cons( x , top ) ;
   }     // ~~~~~~~~~~~~~~~(G)
   print( top ) ; // 前回示したリスト全要素表示
// ~~~~~~~~~~~~(H)
   return 0 ; // (生成したリストの廃棄処理は省略)
}
// (1) 入力で、11 , 22 を与えるとどうなる? - 下図参照
// (2) 練習問題(A)~(H)の型は?
// (3) 入力で、11,22 の後に 33 を与えるとどうなる?

ここで示したコードは、新しい要素を先頭に挿入していく処理となる。このため、作られたリストは、与えられた要素順とは逆順となる。この方法は、リストを管理するポインタが1つで分かりやすい

授業では、C言語のプログラムを示しているが、C++を使うと LIST 処理もシンプルに記述できるようになっている。参考資料として、C++で同様の処理を示す。テンプレートを使ったコンテナクラスを使うと、struct List {…} といった記述は不要で、std::forward_list<int> という型を使うだけで書けてしまう。

// C++ コンテナクラスで書くと...(auto を使うには C++11 以上)
#include <iostream>
#include <forward_list>
#include <algorithm>
int main() {
   std::forward_list<int> top ;
   int x ;
   while( std::cin >> x )
      top.push_front( x ) ;
   for( auto i = top.cbegin() ; i != top.cend() ; ++i )
      std::cout << *i << std::endl ;
   return 0 ;
}

要素を末尾に追加して追加順序で保存

前に示した方法は、逆順になるので、追加要素が常に末尾に追加される方法を示す。

struct List* top = NULL ;
struct List** tail = &top ;

int main() {
   int x ;
   while( scanf( "%d" , &x ) == 1 ) {
      //  ~~~~~~~~~~~~~~~~~~~~~~~(A)
      *tail = cons( x , NULL ) ;
      tail = &((*tail)->next) ;
   }//~~~~~~~~~~~~~~~~~~~~~~~(B) 下記の解説参照
   print( top ) ; // 前回示したリスト全要素表示
// ~~~~~~~~~~~~(C)
   return 0 ;  // (生成したリストの廃棄処理は省略)  
}
// (1) 入力で 11,22 を与えるとどうなる? - 下図参照 
// (2) 練習問題(A),(C)の型は?
// (3) 11,22の後に、さらに 33 を与えるとどうなる?

この方法は、次回にデータを追加する場所(末尾の目印のNULLが入っているデータの場所)を覚える方式である。ただし、リストへのポインタのポインタを使う方法なので、少しプログラムがわかりづらいかもしれない。

理解の確認のために、末尾のポインタを動かす部分の式を、型で解説すると以下のようになる。

途中でデータ挿入・データ削除

リスト構造の特徴は、途中にデータを入れたり、途中のデータを抜くのが簡単にできる所。そのプログラムは以下のようになるだろう。

void insert( struct List*p , int data ) {
   // p    は要素を入れる前のポインタ
   // data は追加する要素
   //      あえて、補助関数consを使わずに書いてみる
   struct List* n ;
   n = (struct List*)malloc( sizeof( struct List ) ) ;
       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(A)
   if ( n != NULL ) {
      n->data = data ;
                ~~~~(B)
      n->next = p->next ;
                ~~~~~~~(C)
      p->next = n ;
   }
   // consを使って書けば、簡単
   //  p->next = cons( data , p->next ) ;
}

int main() {
   struct List* top = cons( 11 , cons( 22 , cons( 44 , NULL ) ) ) ;
   //                                      ↑
   insert( top->next , 33 ) ;           // ここに33を挿入したい

   return 0 ;  // (生成したリストの廃棄処理は省略)
}

void remove_after( struct List* p ) {
   struct List* del = p->next ;
   p->next = del->next ;
   free( del ) ;
}

int main() {
   struct List* top = cons( 11 , cons( 22 , cons( 33 , cons( 44 , NULL ) ) ) ) ;
   remove_after( top->next ) ;                //  ↑
   return 0 ;  // リストの廃棄処理は省略)       // これを消したい
}

理解度確認

上記プログラムinsert() の中の、下線部(A),(B),(C)の型は何か答えよ。

レポート課題

以下に示すようなデータを扱うリスト構造を作り、そのリストを扱うプログラムを作成せよ。
( 出席番号 % 3 ) の番号の課題に取り組むこと。

  1. 緯度(latitude)経度(longitude)とその場所の都市名(city)
  2. 名前(name)と誕生日(month,day)(1つの変数に2月7日を0207のように保存するのは禁止)
  3. 複素数(re,im)

このようなプログラムを作るのであれば、以下の例を参考に。

struct NameAgeList {
   char                name[ 20 ] ; // 名前
   int                 age ;        // 年齢
   struct NameAgeList* next ;       // 次のデータへのポインタ
} ;
struct NameAgeList* na_cons( char* nm, int ag,
                             struct NameAgeList*p )
{  struct NameAgeList* ans ;
   ans = (struct NameAgeList*)malloc(
               sizeof( struct NameAgeList ) ) ;
   if ( ans != NULL ) {
      strcpy( ans->name , nm ) ;
      ans->age  = ag ;
      ans->next = p ;
   }
   return ans ;
}

int main() {
   struct NameAgeList* top = NULL ;
   struct NameAgeList* p ;
   char buff[ 1024 ] ;
   // 1行読み込みの繰り返し
   while( fgets( buff , sizeof( buff ) , stdin ) != NULL ) {
      char nm[ 100 ] ;
      int ag ;
      // 1行の中から名前と年齢があったら na_cons で挿入保存
      if ( sscanf( buff , "%s%d" , nm , &ag ) == 2 ) {
         top = na_cons( nm , ag , top ) ;
      }     
   }
   // 読み込んだデータを全部出力
   for( p = top ; p != NULL ; p = p->next )
      printf( "%s %d¥n" , p->name , p->age ) ;
   return 0 ;  // リストの廃棄処理は省略)
}

オブジェクト指向とソフトウェア工学

オブジェクト指向プログラミングの最後の総括として、 ソフトウェア工学との説明を行う。

トップダウン設計とウォーターフォール型開発

ソフトウェア工学でプログラムの開発において、一般的なサイクルとしては、 専攻科などではどこでも出てくるPDCAサイクル(Plan, Do, Check, Action)が行われる。 この時、プログラム開発の流れとして、大企業でのプログラム開発では一般的に、 トップダウン設計とウォーターフォール型開発が行われる。

トップダウン設計では、全体の設計(Plan)を受け、プログラムのコーディング(Do)を行い、 動作検証(Check)をうけ、最終的に利用者に納品し使ってもらう(Action)…の流れで開発が行われる。設計(Plan)の中身は、要件定義機能仕様動作仕様…といった細かなフェーズになることも多い。 この場合、コーディングの際に設計の不備が見つかり設計のやり直しが発生すれば、 全行程の遅延となることから、前段階では完璧な設計が必要となる。 このような、上位設計から下流工程にむけ設計する方法は、トップダウン設計などと呼ばれる。また、処理は前段階へのフィードバック無しで次工程へ流れ、 川の流れが下流に向かう状態にたとえ、ウォーターフォールモデルと呼ばれる。

引用:Think IT 第2回開発プロセスモデル

このウォーターフォールモデルに沿った開発では、横軸時間、縦軸工程とした ガントチャートなどを描きながら進捗管理が行われる。

引用:Wikipedia ガントチャート

V字モデル

一方、チェック工程(テスト工程)では、 要件定義を満たしているかチェックしたり、基本設計や詳細設計が仕様を満たすかといったチェックが存在し、テストの前工程とそれぞれ対応した機能のチェックが存在する。 その各工程に対応したテストを経て最終製品となる様は、V字モデルと呼ばれる。

引用:@IT Eclipseテストツール活用の基礎知識

しかし、ウォーターフォールモデルでは、(前段階の製作物の不備は修正されるが)前段階の設計の不備があっても前工程に戻るという考えをとらないため、全体のPDCAサイクルが終わって次のPDCAサイクルまで問題が残ってしまう。巨大プロジェクトで大量の人が動いているだから、簡単に方針が揺らいでもトラブルの元にしかならないことから、こういった手法は大人数巨大プロジェクトでのやり方である。

ボトムアップ設計とアジャイル開発

少人数でプログラムを作っている時(あるいはプロトタイプ的な開発)には、 部品となる部分を完成させ、それを組合せて全体像を組み上げる手法もとられる。 この方法は、ボトムアップ設計と呼ばれる。このような設計は場当たり的な開発となる場合があり設計の見直しも発生しやすい。

また、ウォーターフォールモデルでは、前工程の不備をタイムリーに見直すことができないが、 少人数開発では適宜前工程の見直しが可能となる。 特にオブジェクト指向プログラミングを実践して隠蔽化が正しく行われていれば、 オブジェクト指向によるライブラリの利用者への影響を最小にしながら、ライブラリの内部設計の見直しも可能となる。 このような外部からの見た挙動を変えることなく内部構造の改善を行うことリファクタリングと呼ばれる。

一方、プログラム開発で、ある程度の規模のプログラムを作る際、最終目標の全機能を実装したものを 目標に作っていると、全体像が見えずプログラマーの達成感も得られないことから、 機能の一部分だけ完成させ、次々と機能を実装し完成に近づける方式もとられる。 この方式では、機能の一部分の実装までが1つのPDCAサイクルとみなされ、 このPDCAサイクルを何度も回して機能を増やしながら完成形に近づける方式とも言える。 このような開発方式は、アジャイルソフトウェア開発と呼ぶ。 一つのPDCAサイクルは、アジャイル開発では反復(イテレーション)と呼ばれ、 短い開発単位を反復し製品を作っていく。この方法では、一度の反復後の実装を随時顧客に見てもらうことが可能であり、顧客とプログラマーが一体となって開発が進んでいく。

引用:コベルコシステム

エクストリームプログラミング

アジャイル開発を行うためのプログラミングスタイルとして、 エクストリームプログラミング(Xp)という考え方も提唱されている。 Xpでは、5つの価値(コミュニケーション,シンプル,フィードバック,勇気,尊重)を基本とし、 開発のためのプラクティス(習慣,実践)として、 テスト駆動開発(コーディングでは最初に機能をテストするためのプログラムを書き、そのテストが通るようにプログラムを書くことで,こまめにテストしながら開発を行う)や、 ペアプログラミング(2人ペアで開発し、コーディングを行う人とそのチェックを行う人で役割分担をし、 一定期間毎にその役割を交代する)などの方式が取られることが多い。

リーン・ソフトウェア開発は、トヨタ生産方式を一般化したリーン生産方式をソフトウェア開発に導入したもの。ソフトウェアでよく言われる話として「完成した機能の64%は使われていない」という分析がある。これでは、開発に要する人件費の無駄遣いとみることもできる。そこで、品質の良いものを作る中で無駄の排除を目的とし、本当にその機能は必要かを疑いながら、優先順位をつけ実装し、その実装が使われているのか・有効に機能しているのかを評価ながら開発をすすことが重要であり、リーン生産方式がソフトウェア開発にも取り込まれていった。

伽藍(がらん)とバザール

これは、通常のソフトウェア開発の理論とは異なるが、重要な開発手法の概念なので「伽藍とバザール」を紹介する。

伽藍(がらん)とは、優美で壮大な寺院のことであり、その設計・開発は、優れた設計・優れた技術者により作られた完璧な実装を意味している。バザールは有象無象の人の集まりの中で作られていくものを意味している。

たとえば、伽藍方式の代表格である Microsoft の製品は、優秀なプロダクトだが、中身の設計情報などを普通の人は見ることはできない。このため潜在的なバグが見つかりにくいと言われている。

これに対しバザール方式の代表格の Linux は、インターネット上にソースコードが公開され、誰もがソースコードに触れプログラムを改良してもいい(オープンソース)。その中で、新しい便利な機能を追加しインターネットに公開されれば、良いコードは生き残り、悪いコードは自然淘汰されていく。

このオープンソースを支えているツールとしては、プログラムの変更履歴やバージョン管理を行う分散型バージョン管理システム git が有名であり、Linux のソフトウェア管理などで広く利用されている。。

オープンソースライセンス

バザール方式は、オープンソースライセンスにより成り立っていて、このライセンスが適用されていれば、改良した機能はインターネットに公開する義務を引き継ぐ。このライセンスの代表格が、GNU パブリックライセンス(GPL)であり、公開の義務の範囲により、BSD ライセンスApacheライセンスといった違いがある。

コピーレフト型 GNU ライセンス(GPL) 改変したソースコードは公開義務,
組み合わせて利用で対応箇所の開示。
準コピーレフト型 LGPL, Mozilla Public License 改変したソースコードは公開義務。
非コピーレフト型 BSDライセンス, Apacheライセンス ソースコードを改変しても公開しなくてもいい。

GPLライセンスのソフトウェアを組み込んで製品を開発した場合に、ソースコード開示を行わないとGPL違反となる。大企業でこういったGPL違反が発生すると、大きな風評被害による損害をもたらす場合がある

リスト処理

リスト構造

リスト構造は、データと次のデータへのポインタで構成され、必要に応じてメモリを確保することで、配列の上限が制限にならないようにする。また、次のデータへのポインタでつなげているため、途中へのデータ挿入が簡単にできるようにする。

まずは、メモリ確保とポインタをつなげるイメージを確実に理解してもらうために、1つ1つのデータをポインタでつなげる処理を示す。

#include <stdio.h>
#include <stdlib.h>

// List構造の宣言
struct List {
   int          data ;  // データ保存部
   struct List* next ;  // 次のデータへのポインタ
} ;

int main() {
   struct List* top ;   // データの先頭
   struct List* p ;

   // (1)
   top = (struct List*)malloc( sizeof( struct List ) ) ;
   top->data = 111 ;
   // (2)
   top->next = (struct List*)malloc( sizeof( struct List ) ) ;
   top->next->data = 222 ;
   // (3)
   top->next->next = (struct List*)malloc( sizeof( struct List ) ) ;
   top->next->next->data = 333 ;
   top->next->next->next = NULL ; // 末尾データの目印

   for( p = top ; p != NULL ; p = p->next ) {
      printf( "%d¥n" , p->data ) ;
   }
   return 0 ;
}

このようなメモリーの中のポインタの指し示す番地のイメージを、具体的な番地の数字を書いてみると、以下のような図で表せる。先頭の111が入った部分が1000番地であったなら、topというポインタには1000番地が入っている。

NULLって何?

前回の授業で説明した、次の配列の添え字の番号を使う方式では、データの末尾を示すためには、-1 を使った。-1 は、配列の添え字で通常ありえない値であり、次のデータはないという目印とした。

同じように、C言語では、通常あり得ないポインタとして、0 番地を示す NULL が定義されている。NULLポインタの先を参照してはいけない。このリスト処理では、末尾を表す目印として使っている。

#define NULL 0

補助関数

上記のプログラムでは、(struct…)malloc(sizeof(…))を何度も記載し、プログラムが分かりにくいので、以下に示す補助関数を使うと、シンプルに記載できる。

struct List* cons( int x , struct List* n ) {
   struct List* ans ;
   ans = (struct List*)malloc( sizeof( struct List ) ) ;
   if ( ans != NULL ) {
      ans->data = x ;
      ans->next = n ;
   }
   return ans ;
}

int main() {
   struct List* top ;
   top = cons( 111 , cons( 222 , cons( 333 , NULL ) ) ) ;
   :
   return 0 ; // Listの開放free()は省略
}

補助関数の名前の cons は、constructor の略であり、古くから使われている List Processor(LISP) というプログラム言語でのリスト(セル)を生成する関数が cons 。

typedefを使った書き方

List構造の宣言は、古い書き方では typedef を使うことも多い。typedef は、型宣言において新しい型の名前をつける命令。

// typedef の使い方
//    typedef 型宣言 型名 ;
typedef unsigned int uint32 ; // 符号なし32bit整数をシンプルに書きたい
uint32 x = 12345 ;

typedef struct LIST {     // 構造体のタグ名と新しくつける型名と重複できない
      int   data ;        // のでこの時点のタグ名は "LIST" としておく
      struct LIST* next ;
   } List ;

List* cons( int x , List* n ) {  // C++なら struct List { ... } ; と書く
   List* ans ;                   // だけでこういう表記が可能
   ans = (List*)malloc( sizeof( List ) ) ;
   :
   ((略))
}
int main() {
   List* top ;
   top = cons( 111 , cons( 222 , cons( 333 , NULL ) ) ) ;
   :
   ((略))
}

最近のC言語(C++)では、構造体のタグ名がそのまま型名として使えるので、こういう書き方をする必要はなくなってきている。

// 最近のC++なら...
struct List {
public:
   int   data ;
   List* next ;
public:
   List( int x , List* n )
     : data( x ) , next( n ) {}
} ;

int main() {
   List* top = new List( 111 , new List( 222 , new List( 333 , NULL ) ) ) ;
   :
   // Listの開放deleteは省略
}

LISPと関数型プログラミング言語

LISPの歴史は長く、最古のFORTRAN,COBOLに次ぐ3番目ぐらいに遡る。最初は、人工知能(AI)のプログラム開発のための関数型プログラミング言語として作られた。特徴として、データもプログラムもすべてリスト構造(S式)で表すことができ、プログラムは関数型に基づいて作られる。

関数型プログラミングは、Ruby や Python でも取り入れられている。関数型プログラミングは、処理を関数をベースに記述することで「副作用を最小限にすることができ」、極端な話をすればループも再帰呼出しの関数で書けばいい…。

LISPの処理系は、最近では Scheme などが普通だが、プログラムエディタの Emacs は、内部処理が LISP で記述されている。

古いAI※※と最近のAIの違い

最近では、AI(Artificial Intelligence) という言葉が復活してきたが、LISP が開発された頃の AI と最近注目されている AI は、微妙に異なる点がある。

LISPが開発された頃の AI は、関数型のプログラム言語で論理的思考を表現することが目標であった。頭脳を左脳と右脳の違いで表現することが多いが、どちらかというとLISPの時代のAI「分析的で論理的に優れ、言語力や計算機能が高い」とされる左脳を作り出すことを目指していた。しかしながら、この時代では、漠然としたパターンを認識したりするような「感覚的、直感的な能力に優れ総合判断力を司る右脳」のような処理は苦手であった。

しかしながら、最近注目されている AI は、脳神経を真似たニューラルネットワークから発展した機械学習ディープラーニングという技法により今まで難しかった右脳の機能を実現することで、最近のAIでは左脳と右脳の機能を兼ね備えたものとなっている。

将棋のプログラミングで例えるなら、左脳(古いAI)に例えられるのが正確に先の手を読む機能であり、右脳に例えられる機能が大局観(全体の良し悪しを見極める判断能力)といえる。

簡単なリスト処理の例

先に示したリスト構造について簡単なプログラム作成を通して、プログラミングに慣れてみよう。

// 全要素を表示する関数
void print( struct List* p ) {
   for( ; p != NULL ; p = p->next )
      printf( "%d " , p->data ) ;
   printf( "¥n" ) ;
}
// データ数を返す関数
int count( struct List* p ) {
   int c = 0 ;
   for( ; p != NULL ; p = p->next )
      c++ ;
   return c ;
}
int main() {
   struct List* top = cons( 111 , cons( 444 , cons( 333 , NULL ) ) ) ;
   print( top ) ;
   printf( "%d¥n" , count( top ) ) ; 
   return 0 ;
}

リスト処理を自分で考えて作成

以下のようなプログラムを作ってみよう。意味がわかって慣れてくれば、配列の部分の for の回し方が変わっただけということに慣れてくるだろう。

// 全要素の合計
int sum( struct List* p ) {
   // sum( top ) → 888
   自分で考えよう
}
// リストの最大値を返す
int max( struct List* p ) {
   // max( top ) → 444 (データ件数0の場合0を返す)
   自分で考えよう
}
// リストの平均値を返す
double mean( struct List* p ) {
   // (111+444+333)/3=296.0
   自分で考えよう
}
// リストの中から指定した値の場所を返す
int find( struct List* p , int key ) {
   // find( top , 444 ) = 1 (先頭0番目)
   // 見つからなかったら -1
   自分で考えよう
}

再帰呼び出しでリスト処理

リスト処理の応用のプログラムを作るなかで、2分木などのプログラミングでは、リスト処理で再帰呼出しを使うことも多いので、先に示したプログラムを再帰呼び出しで書いたらどうなるであろうか?

// 全データを表示
void print( struct List* p ) {
   if ( p == NULL ) {
      printf( "¥n" ) ;
   } else {
      printf( "%d " , p->data ) ;
      print( p->next ) ; // 末尾再帰
   }
}
// データ数を返す関数
int count( struct List* p ) {
   if ( p == NULL )
      return 0 ;
   else
      return 1 + count( p->next ) ; // 末尾再帰
}
// 全要素の合計
int sum( struct List* p ) {
   // sum( top ) → 888
   自分で考えよう
}
// リストの最大値を返す
int max( struct List* p ) {
   // max( top ) → 444 (データ件数0の場合0を返す)
   自分で考えよう
}
// リストの中から指定した値を探す。
int find( struct List* p , int key ) {
   // find( top , 444 ) = 1 
   // 見つかったら1 , 見つからなかったら 0
   自分で考えよう
}

理解度確認

上記プログラム中の sum() , max() , find() を再帰呼び出しをつかって記述せよ。

Paiza Cloud 使ってみるか

先日、教えてもらった Paiza.io だけど、PHP の中に JavaScript を交えても動くけど、form + onsubmit を使うようなプログラムだと、ちょっとうまく動かない。

こういう時は、Paiza Cloud を使えばいいみたい。24時間の間であれば、無料で仮想サーバを借りて使うことができるみたい。24時間経つと、ファイルは消されちゃうみたいだけど、簡単な講習会だったらこれで十分だろう。

paiza.io 便利だね

講習会の講師依頼があり、プログラミングの基礎を教えることになったけど、場所が学内でもないため、どういった準備をすべきか思案中。

それなら、paiza.io を使ってみたらとの情報をもらう。

https://paiza.io/

これなら、C++, PHP, JavaScript の動作検証も簡単かな。PHPのコードの中に、JavaScript を埋め込んでもそれなりに動くな。

入力のある JavaScript を動かす簡単なプログラム例

<html>
  <head>
    <title>
      じっけん
    </title>
    <script>
      function my_exec() {
        let a = document.getElementById( "a" ).value ;
        let b = document.getElementById( "b" ).value ;
        let c = document.getElementById( "c" ) ;
        c.value = parseInt( a , 10 ) + parseInt( b , 10 ) ;
        return false ;
      }
    </script>
  </head>
<body>
  <h1>たいとる</h1>
    <form method="POST" action="zz.php" >
      <input type="text" name="a" id="a" />
      +
      <input type="text" name="b" id="b" />
      =
      <input type="text" name="c" id="c" />
      <input type="button" value="BUTTON" onclick="my_exec()" />
    </form>
  </body>
</html>

<input type=”submit” … /> とか、<form … onsubmit=”my_exec()” > を使うと、ページ遷移が発生するので、paiza.io の環境では、動かなくなる。<input type=”button” onclick=”my_exec()” /> を使えば、大丈夫。

システム

最新の投稿(電子情報)

アーカイブ

カテゴリー