ホーム » 2020 » 5月 » 25

日別アーカイブ: 2020年5月25日

2020年5月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

最新の投稿(電子情報)

アーカイブ

カテゴリー

SolidWorks使い方入門

SolidWorks

3Dプリンタ AFINIA H800

ソート処理の見積もりとポインタ処理

前回の授業では、再帰処理やソートアルゴリズムの処理時間の見積もりについて説明を行った。

ソート処理の見積もり

この際の練習問題の1つめは、「再帰方程式の理解度確認の回答」にて解説を示す。

最後の練習問題はここで説明を行う。

選択法とクイックソートの処理時間の比較

例として、データ数N=20件で、選択法なら10msec、クイックソートで20msecかかったとする。

これより、選択法の処理時間を、クイックソートの処理時間を、とすると、





よって、

処理時間が逆転するときのデータ件数は、2つのグラフの交点を求めることになるので、

より、以下の式を解いた答えとなる。これは通常の方程式では解けないが電卓で求めると、N=53.1 ほどかな。(2020/05/26) 真面目に解いたら N=53.017 だった。

実際にも、クイックソートを再帰呼び出しだけでプログラムを書くと、データ件数が少ない場合は選択法などのアルゴリズムの方が処理時間が早い。このため、C言語などの組み込み関数の qsort() などは、データ件数が20とか30とか一定数を下回ったら、再帰を行わずに選択法でソートを行うのが一般的である。

ポインタ処理

ここからは、次のメモリの消費を考慮したプログラムの説明を行うが、ポインタの処理に慣れない人が多いので、ポインタを使ったプログラミングについて説明を行う。

値渡し(call by value)

// 値渡しのプログラム
void foo( int x ) {  // x は局所変数(仮引数は呼出時に
                     // 対応する実引数で初期化される。
   x++ ;
   printf( "%d¥n" , x ) ;
}
void main() {
   int a = 123 ;
   foo( a ) ;  // 124
               // 処理後も main::a は 123 のまま。
   foo( a ) ;  // 124
}

このプログラムでは、aの値は変化せずに、124,124 が表示される。

言い方を変えるなら、呼び出し側main() では、関数の foo() の処理の影響を受けない。このように、関数には仮引数の値を渡すことを、値渡し(call by value)と言う。

でも、プログラムによっては、124,125 と変化して欲しい場合もある。
どのように記述すべきだろうか?

// 大域変数を使う場合
int x ;
void foo() {
   x++ ;
   printf( "%d¥n" , x ) ;
}
void main() {
   x = 123 ;
   foo() ;  // 124
   foo() ;  // 125
}

しかし、このプログラムは大域変数を使うために、間違いを引き起こしやすい。

// 大域変数が原因で予想外の挙動をしめす簡単な例
int i ;
void foo() {
   for( i = 0 ; i < 2 ; i++ )
      printf( "A" ) ;
}
void main() {
   for( i = 0 ; i < 3 ; i++ )  // このプログラムでは、AA AA AA と
      foo() ;                   // 表示されない。
}

ポインタ渡し(call by pointer)

C言語で引数を通して、呼び出し側の値を変化して欲しい場合は、(引数を経由して関数の副作用を受け取るには)、変更して欲しい変数のアドレスを渡し、関数側では、ポインタ変数を使って受け取った変数のアドレスの示す場所の値を操作する。このような値の受け渡し方法は、ポインタ渡し(call by pointer)と呼ぶ。

// ポインタ渡しのプログラム
void foo( int* p ) {  // p はポインタ
   (*p)++ ;
   printf( "%d¥n" , *p ) ;
}
void main() {
   int a = 123 ;
   foo( &a ) ;  // 124
                // 処理後 main::a は 124 に増えている。
   foo( &a ) ;  // 124
}               // さらに125と増える。

C言語では、関数から結果をもらうには、通常は関数の返り値を使う。しかし、返り値は1つの値しか受け取ることができないので、上記のようにポインタを使って、呼び出し側は:結果を入れてもらう場所を伝え、関数側は:指定されたアドレスに結果を書む。

ポインタの加算と配列アドレス

ポインタに整数値を加えることは、アクセスする場所が、指定された分だけ後ろにずれることを意味する。

// ポインタ加算の例
int a[ 5 ] = { 11 , 22 , 33 , 44 , 55 } ;

void main() {
   int* p ;
                               //            p∇
   p = &a[2] ;                 // a[] : 11,22,33,44,55
                               //       -2    +0 +1
   printf( "%d¥n" , *p ) ;     // 33  p[0]
   printf( "%d¥n" , *(p+1) ) ; // 44  p[1]
   printf( "%d¥n" , *(p-2) ) ; // 11  p[-2]

   p = a ;                  //      p∇
   printf( "%d¥n" , *p ) ;  // a[] : 11,22,33,44,55
   p++ ;                    //       → p∇
   printf( "%d¥n" , *p ) ;  // a[] : 11,22,33,44,55
   p += 2 ;                 //           → → p∇
   printf( "%d¥n" , *p ) ;  // a[] : 11,22,33,44,55
}

ここで、注意すべき点は、ポインタの加算した場所の参照と、配列の参照は同じ意味となる。

*(p + 整数式)p[ 整数式 ] は同じ意味

特に配列 a[] の a だけを記述すると、配列の先頭を意味することに注意。

構造体とポインタ

構造体を関数に渡して処理を行う例を示す。

struct Person {
   char name[ 10 ] ;
   int  age ;
} ;
struct Person table[3] = {
   { "t-saitoh" , 55 } ,
   { "tomoko" ,   44 } ,
   { "mitsuki" ,  19 } ,
} ;

void print_Person( struct Person* p ) {
   printf( "%s %d\n" ,
           (*p).name , // * と . では . の方が優先順位が高い
                       // p->name と簡単に書ける。
           p->age ) ;  // (*p).age の簡単な書き方
}

void main() {
   for( int i = 0 ; i < 3 ; i++ ) {
      print_Person( &(table[i]) ) ;
   // print_Person( table + i ) ; でも良い
   }
}

構造体へのポインタの中の要素を参照する時には、アロー演算子 -> を使う。

練習問題(2018年度中間試験問題より)

派生と継承

隠ぺい化の次のステップとして、派生・継承を説明する。オブジェクト指向プログラミングでは、一番基本となるデータ構造を宣言し、その基本構造に様々な機能を追加した派生クラスを記述することでプログラムを作成する。今回は、その派生を理解するためにC言語で発生する問題点を考える。

派生を使わずに書くと…

元となるデータ構造(例えばPersonが名前と年齢)でプログラムを作っていて、 途中でその特殊パターンとして、所属と学年を加えた学生(Student)という データ構造を作るとする。

// 元となる構造体(Person) / 基底クラス
struct Person {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
} ;
// 初期化関数
void set_Person( struct Person* p ,
                 char s[] , int x ) {
   strcpy( p->name , s ) ;
   p->age = x ;
}
// 表示関数
void print_Person( struct Person* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;
}
int main() {
   struct Person saitoh ;
   set_Person( &saitoh , "t-saitoh" , 50 ) ;
   print_Person( &saitoh ) ;
   return 0 ;
}

パターン1(そのまんま…)

上記のPersonに、所属と学年を加えるのであれば、以下の方法がある。 しかし以下パターン1は、要素名がname,ageという共通な部分があるようにみえるが、 プログラム上は、PersonとPersonStudent1は、まるっきり関係のない別の型にすぎない。

このため、元データと共通部分があっても、同じ処理を改めて書き直しになる。

// 元のデータに追加要素(パターン1)
struct PersonStudent1 {
   // Personと同じ部分
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢

   // 追加部分
   char dep[ 20 ] ;  // 所属
   int  grade ;      // 学年
} ;
void set_PersonStudent1( struct PersonStudent1* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // set_Personと同じ処理を書いている。
   strcpy( p->name , s ) ;
   p->age = x ;

   // 追加された処理
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

// 名前と年齢 / 所属と学年を表示
void print_PersonStudent1( struct PersonStudent1* p ) {
   // print_Personと同じ処理を書いている。
   printf( "%s %d\n" , p->name , p->age ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ;
}

int main() {
   struct PersonStudent1 yama1 ;
   set_PersonStudent1( &yama1 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent1( &yama1 ) ;
   return 0 ;
}

パターン2(元データの処理を少し使って…)

パターン1では、機能が追加された新しいデータ構造のために、同じような処理を改めて書くことになりプログラムの記述量を減らせない。面倒なので、 元データ用の関数をうまく使うように書いてみる。

// 元のデータに追加要素(パターン2)
struct PersonStudent2 {
   // 元のデータPerson
   struct Person person ;

   // 追加部分
   char          dep[ 20 ] ;
   int           grade ;
} ;

void set_PersonStudent2( struct PersonStudent2* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // Personの関数を部分的に使う
   set_Person( &(p->person) , s , x ) ;

   // 追加分はしかたない
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

void print_PersonStudent2( struct PersonStudent2* p ) {
   // Personの関数を使う。
   print_Person( &p->person ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ; 
}

int main() {
   struct PersonStudent2 yama2 ;
   set_PersonStudent2( &yama2 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent2( &yama2 ) ;
   return 0 ;
}

このパターン2であれば、元データ Person の処理をうまく使っているので、 プログラムの記述量を減らすことはできるようになった。

しかし、print_PersonStudent2() のような処理は、元データ構造が同じなのに、 いちいちプログラムを記述するのは面倒ではないか?

そこで、元データの処理を拡張し、処理の流用ができないであろうか?

基底クラスから派生クラスを作る

オブジェクト指向では、元データ(基底クラス)に新たな要素を加えたクラス(派生クラス)を 作ることを「派生」と呼ぶ。派生クラスを定義するときは、クラス名の後ろに、 「:」「public/protected/private」基底クラス名を書く。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   // 追加部分
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
} ;

int main() {
   Person saitoh( "t-saitoh" , 50 ) ;
   saitoh.print() ;
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
   return 0 ;
}

ここで注目すべき点は、main()の中で、Studentクラス”yama”に対し、yama.print() を呼び出しているが、パターン2であれば、print_PersonStudent2()に相当するプログラムを 記述していない。 しかし、この派生を使うと Person の print() が自動的に流用することができる。 これは、基底クラスのメソッドを「継承」しているから、 このように書け、名前と年齢「yama 22」が表示される。

さらに、Student の中に、以下のような Student 専用の新しい print()を記述してもよい。

class Student ...略... {
   ...略...

   // Student クラス専用の print() 
   void print() {
      // 親クラス Person の print() を呼び出す
      Person::print() ;
      // Student クラス用の処理
      printf( "%s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   ...略...
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

この場合は、継承ではなく機能が上書き(オーバーライト)されるので、 「yama 22 / PS 2」が表示される。

派生クラスを作る際の後ろに記述した、public は、他にも protected , private を 記述できる。

public    だれもがアクセス可能。
protected であれば、派生クラスからアクセスが可能。
          派生クラスであれば、通常は protected で使うのが一般的。
private   派生クラスでもアクセス不可。

仮想関数への伏線

上記のような派生したプログラムを記述した場合、以下のようなプログラムでは何が起こるであろうか?

class Student ... {
   :
   void print() {
      Person::print() ;                    // 名前と年齢を表示
      printf( " %s %d¥n" , dep , grade ) ; // 所属と学年を表示
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   saitoh.print() ;                // t-saitoh 55 名前と年齢を表示

   Student mitsu( "mitsuki" , 20 , "KIT" ,  3 ) ;
   Student ayuka( "ayuka" ,   18 , "EI" ,   4 ) ;
   mitsu.print() ;                 // mitsuki 20 / KIT 3  名前,年齢,所属,学年を表示
   ayuka.print() ;                 // ayuka 18   / EI  4  名前,年齢,所属,学年を表示

   Person* family[] = {
      &saitoh , &mitsu , &ayuka ,  // 配列の中に、Personへのポインタと
   } ;                             // Studentへのポインタが混在している
                                   // 派生クラスのポインタは、
                                   // 基底クラスのポインタとしても扱える
   for( int i = 0 ; i < 3 ; i++ )
      family[ i ]->print() ;       // t-saitoh 55/mitsuki 20/ayuka 18
   return 0 ;                      // が表示される。 
}                                  // # "mitsuki 20/KIT 3" とか "ayuka 18/EI 4"
                                   // # が表示されてほしい?