2019データベース・ガイダンス
インターネットの情報量
インターネット上の情報量の話として、2010年度に281EB(エクサバイト)=281✕1018B(参考:kMGTPEZY)で、今日改めて探したら、2013年度で、1.2 ZB(ゼタバイト)=1.2✕1021B という情報があった。ムーアの法則2年で2倍の概算にも、それなりに近い。 では、今年2019年であれば、どのくらいであろうか?
そして、これらの情報をGoogleなどで探す場合、すぐにそれなりに情報を みつけてくれる。これらは、どの様に実装されているのか?
Webシステムとデータベース
まず、指定したキーワードの情報を見つけてくれるものとして、 検索システムがあるが、このデータベースはどのようにできているのか?
Web創成期の頃であれば、Yahooがディレクトリ型の検索システムを構築 してくれている。(ページ作者がキーワードとURLを登録する方式) しかし、ディレクトリ型では、自分が考えたキーワードではページが 見つからないことが多い。
そこで、GoogleはWebロボット(クローラー)による検索システムを構築した。 Webロボットは、定期的に登録されているURLをアクセスし、 そのページ内の単語を分割しURLと共にデータベースに追加する。 さらに、ページ内にURLが含まれていると、そのURLの先で、 同様の処理を再帰的に繰り返す。
これにより、巨大なデータベースが構築されているが、これを少ない コンピュータで実現すると、処理速度が足りず、3秒ルール/5秒ルール (Web利用者は次のページ表示が3秒を越えると、次に閲覧してくれない) これを処理するには負荷分散が重要となる。
一般的に、Webシステムを構築する場合には、 1段:Webサーバ、2段:動的ページ言語、3段:データベースとなる場合も 多い。この場合、OS=Linux,Web=Apache,DB=MySQL,動的ページ生成言語=PHPの組合せで、 LAMP構成とする場合も多い。
一方で、大量のデータを処理するDBでは、フロントエンド,スレーブDB,マスタDBのWebシステムの3段スキーマ構成となることも多い。
データベースシステム
データベースには、ファイル内のデータを扱うためのライブラリの、 BerkleyDBといった場合もあるが、複雑なデータの問い合わせを実現する 場合には、リレーショナル・データベース(RDB)を用いる。 RDBでは、データをすべて表形式であらわし、SQLというデータベース 問い合わせ言語でデータを扱う。 また、問い合わせは、ネットワーク越しに実現可能であり、こういった RDBで有名なものとして、Oracle , MySQL , PostgreSQL などがある。 単一コンピュータ内でのデータベースには、SQLite などがある。
データベースシステムと呼ばれるには、ACID特性が重要となる。
- A: 原子性 (Atomicity) – 処理はすべて実行するか / しない のどちらか。
- C: 一貫性 (Consistency) – 整合性とも呼ばれ、与えられたデータのルールを常に満たすこと。
- I: 独立性 (Isolation) – 処理順序が違っても結果が変わらない。それぞれの処理が独立している。
- D: 永続性 (Durability) – データが失われることがない(故障でデータが無くならないとか)
しかし、RDBでは複雑なデータの問い合わせはできるが、 大量のデータ処理のシステムでは、フロントエンドDB,スレーブDB,マスタDB の同期が問題となる。この複雑さへの対応として、最近は NoSQL が 注目されている。
データベースが無かったら
これらのデータベースが無かったら、どのようなプログラムを作る 必要があるのか?
情報構造論ではC言語でデータベースっぽいことをしていたが、 大量のデータを永続的に扱うのであれば、ファイルへのデータの読み書き 修正ができるプログラムが必要となる。
こういったデータをファイルで扱う場合には、1件のデータ長が途中で 変化すると、N番目のデータは何処?といった現象が発生する。 このため、簡単なデータベースを自力で書くには、1件あたりのデータ量を 固定し、lseek() , fwrite() , fread() などの 関数でランダムアクセスのプログラムを書く必要がある。
また、データの読み書きが複数同時発生する場合には、排他処理も 重要となる。例えば、銀行での預け金10万の時、3万入金と、2万引落としが 同時に発生したらどうなるか? 最悪なケースでは、 (1)入金処理で、残金10万を読み出し、 (2)引落し処理で、残金10万を読み出し、 (3)入金処理で10万に+3万で、13万円を書き込み、 (4)引落し処理で、残金10万-2万で、8万円を書き込み。 で、本来なら11万になるべき結果が、8万になるかもしれない。
さらに、コンピュータといってもハードディスクの故障などは発生する。 障害が発生してもデータの一貫性を保つためには、バックアップや 障害対応が重要となる。