ホーム » スタッフ » 斉藤徹 » 講義録 » オブジェクト指向

オブジェクト指向」カテゴリーアーカイブ

2019年7月
« 6月    
 123456
78910111213
14151617181920
21222324252627
28293031  

最近の投稿(電子情報)

アーカイブ

カテゴリー

オブジェクト指向プログラミング2019全講義録

オブジェクト指向とソフトウェア工学

オブジェクト指向プログラミングの最後の総括として、 ソフトウェア工学との説明を行う。

トップダウン設計とウォーターフォール型開発

ソフトウェア工学でプログラムの開発において、一般的なサイクルとしては、 専攻科などではどこでも出てくるPDCAサイクル(Plan, Do, Check, Action)が行われる。 この時、プログラム開発の流れとして、大企業でのプログラム開発では一般的に、 トップダウン設計とウォーターフォール型開発が行われる。

トップダウン設計では、全体の設計(Plan)を受け、プログラムのコーディング(Do)を行い、 動作検証(Check)をうけ、最終的に利用者に納品し使ってもらう(Action)…の流れで開発が行われる。設計の中身も機能仕様や動作仕様…といった細かなフェーズになることも多い。 この場合、コーディングの際に設計の不備が見つかり設計のやり直しが発生すれば、 全行程の遅延となることから、前段階では完璧な設計が必要となる。 このような、上位設計から下流工程にむけ設計する方法は、トップダウン設計などと呼ばれる。また、処理は前段階へのフィードバック無しで次工程へ流れ、 川の流れが下流に向かう状態にたとえ、ウォーターフォールモデルと呼ばれる。

引用:Think IT 第2回開発プロセスモデル

このウォーターフォールモデルに沿った開発では、横軸時間、縦軸工程とした ガントチャートなどを描きながら進捗管理が行われる。

引用:Wikipedia ガントチャート

一方、チェック工程(テスト工程)では、 要件定義を満たしているかチェックしたり、設計を満たすかといったチェックが存在し、 テストの前工程にそれぞれ対応した機能のチェックが存在する。 その各工程に対応したテストを経て最終製品となる様は、V字モデルと呼ばれる。

引用:@IT Eclipseテストツール活用の基礎知識

しかし、ウォーターフォールモデルでは、(前段階の製作物の不備は修正されるが)前段階の設計の不備があっても前工程に戻るという考えをとらないため、全体のPDCAサイクルが終わって次のPDCAサイクルまで問題が残ってしまう。巨大プロジェクトで大量の人が動いているだから、簡単に方針が揺らいでもトラブルの元にしかならないことから、こういった手法は大人数巨大プロジェクトでのやり方である。

ボトムアップ設計とアジャイル開発

少人数でプログラムを作っている時(あるいはプロトタイプ的な開発)には、 部品となる部分を完成させ、それを組合せて全体像を組み上げる手法もとられる。 この方法は、ボトムアップ設計と呼ばれる。このような設計は場当たり的な開発となる場合があり設計の見直しも発生しやすい。

また、ウォーターフォールモデルでは、前工程の不備をタイムリーに見直すことができないが、 少人数開発では適宜前工程の見直しが可能となる。 特にオブジェクト指向プログラミングを実践して隠蔽化が正しく行われていれば、 オブジェクト指向によるライブラリの利用者への影響を最小にしながら、ライブラリの内部設計の見直しも可能となる。 このような外部からの見た挙動を変えることなく内部構造の改善を行うことリファクタリングと呼ばれる。

一方、プログラム開発で、ある程度の規模のプログラムを作る際、最終目標の全機能を実装したものを 目標に作っていると、全体像が見えずプログラマーの達成感も得られないことから、 機能の一部分だけ完成させ、次々と機能を実装し完成に近づける方式もとられる。 この方式では、機能の一部分の実装までが1つのPDCAサイクルとみなされ、 このPDCAサイクルを何度も回して機能を増やしながら完成形に近づける方式とも言える。 このような開発方式は、アジャイルソフトウェア開発と呼ぶ。 一つのPDCAサイクルは、アジャイル開発では反復(イテレーション)と呼ばれ、 短い開発単位を繰り返し製品を作っていく。この方法では、一度の反復後の実装を顧客に見てもらい、 顧客とプログラマーが一体となって開発が行われる。

引用:コベルコシステム

エクストリームプログラミング

アジャイル開発を行うためのプログラミングスタイルとして、 エクストリームプログラミング(Xp)という考え方も提唱されている。 Xpでは、5つの価値(コミュニケーション,シンプル,フィードバック,勇気,尊重)を基本とし、 開発のためのプラクティス(習慣,実践)として、 テスト駆動開発(コーディングでは最初に機能をテストするためのプログラムを書き、そのテストが通るようにプログラムを書くことで,こまめにテストしながら開発を行う)や、 ペアプログラミング(2人ペアで開発し、コーディングを行う人とそのチェックを行う人で役割分担をし、 一定期間毎にその役割を交代する)などの方式が取られることが多い。

リーンソフトウェア開発は、品質の良いものを作る中で無駄の排除を目的とし、本当にその機能は必要かを疑いながら、優先順位をつけ実装し、その実装が使われているのか・有効に機能しているのかを評価ながら開発をすすめる。

伽藍(がらん)とバザール

これは、通常のソフトウェア開発の理論とは異なるが、重要な開発手法の概念なので「伽藍とバザール」を紹介する。

伽藍(がらん)とは、優美な寺院のことであり、その設計・開発は、優れた設計・優れた技術者により作られた完璧な実装を意味している。バザールは有象無象の人の集まりの中で作られていくものを意味している。

たとえば、伽藍方式の代表格である Microsoft の製品は、優秀なプロダクトだが、中身の設計情報などを普通の人は見ることはできない。このため潜在的なバグが見つかりにくいと言われている。これに対しバザール方式の代表格の Linux は、インターネット上にソースコードが公開され、誰もがソースコードに触れプログラムを改良してもいい。その中で、新しい便利な機能を追加しインターネットに公開されれば、良いコードは生き残り、悪いコードは淘汰されていく。

バザール方式は、オープンソースライセンスにより成り立っていて、このライセンスが適用されていれば、改良した機能はインターネットに公開する義務を引き継ぐ。このライセンスの代表格が、GNU パブリックライセンス(GPL)であり、公開の義務の範囲により、BSD ライセンスApacheライセンスといった違いがある。

UML課題

期末試験も近いので、今後の日程の確認。

7/12 UMLレポート課題作成, 7/19 オブジェクト指向のソフトウェア工学, 7/26 課題作成

オブジェクト指向プログラミングの第3回レポート課題は、以下の通り。

特別研究や関連の内容でUMLを記述

専攻科の自分自身の特別研究での自身のプログラムをUMLで表現せよ。もしプログラム作成でない場合は、特別研究で行なっている実験方法とそのデータを UML で表現せよ。

  • UMLとして表現する対象の説明として、レポートとして表現する部分の特別研究の内容を説明
  • 扱うデータ構造などについて、UMLの構造図のうちの1つを選んでその構造図を示せ。またその構造図で表現した理由がわかるような説明をすること(is-a,has-aなど)
  • その処理などについて、UMLの振る舞い図のうちの1つを選んで、その振る舞いを図で説明せよ。同じくその図について説明せよ

UML振る舞い図

参考資料図をもとに振る舞い図の説明を行う。

ユースケース図

1507131131_211x192.png

ユーザなど外部からの要求に対する、システムの振る舞いを表現するための活用事例を表す図がユースケース図。 システムを構築する際に、最初に記述するUMLであり、システムに対する処理要件の全体像を理解するために記述する。 ユーザや外部のシステムは、アクターとよび人形の絵で示す。楕円でシステムに対する具体的な処理をユースケースとして記述する。 関連する複数のユースケースをまとめて、サブジェクトとして示す場合もある。

アクティビティ図

処理順序を記述するための図にはフローチャートがあるが、上から下に処理順序を記述するため、縦長の図になりやすい。また、四角枠の中に複雑なことを書けないので、UMLではアクティビティ図を用いる。

初期状態から、終了状態までの手順を示すためのがアクティビティ図。 複数の処理を並行処理する場合には、フォークノードで複数の処理を併記し、最終的に1つの処理になる部分をマージノードで示す。 通常の処理は、角丸の長方形で示し、条件分岐はひし形で示す。

ステートチャート図(状態遷移図)

ステートチャート図は、処理内部での状態遷移を示すための図。 1つの状態を長丸長方形で示し、初期状態から終了状態までを結ぶ。 1つの状態から、なんらかの状態で他の状態に遷移する場合は、分岐条件となる契機(タイミング)とその条件、およびその効果(出力)を「契機[条件]/効果」で矢印に併記する。 複数の状態をグループ化して表す場合もある。

シーケンス図

複数のオブジェクトが相互にやり取りをしながら処理が進むようなものを記述するためのものがシーケンス図。 上部の長方形にクラス/オブジェクトを示し、その下に時系列の処理の流れの線(Life Line)を描く。 オブジェクトがアクティブな状態は、縦長の長方形で示し、そのLife Line間を、やり取り(メッセージ)の線で相互に結ぶ。 メッセージは、相手側からの返答を待つような同期メッセージは、黒塗り三角矢印で示す。 返答を待たない非同期メッセージは矢印で示し、返答は破線で示す。

コミュニケーション図

クラスやオブジェクトの間の処理とその応答(相互作用)と関連の両方を表現する図。

その他の構造図

前回の講義で説明した構造図について、クラス図・オブジェクト図以外について説明

構造図の主なものとして、クラス図、オブジェクト図以外に、

パッケージ図

パッケージ図は、クラス図をパッケージ毎に分類して記載する図。 パッケージの塊を、フォルダのような図で記載する。


IT専科から引用

コンポーネント図とコンポジット構造図

コンポーネント図は、複数のクラスで構成される処理に、 インタフェースを用意し、あたかも1つのクラスのように扱ったもの。 接続するインタフェースを、提供側を◯───で表し、要求側を⊃──で表す。


IT専科から引用

配置図

配置図は、システムのハードウェア構成や通信経路などを表現するための図。 ハードウェアは直方体の絵で表現し、 デバイスの説明は、”≪device≫”などを示し、実行環境には、”≪executionEnvironment≫” などの目印で表現する。


IT専科から引用

UMLと構造図

UMLの構造図の書き方の説明。 詳しくは、参考ページのUML入門などが、分かりやすい。

雑談

UMLは、プログラムを図によってイメージを説明するために作られたが、プログラムに対する説明はコメントで書くことの方が多いだろう。このプログラムの説明の究極の姿として、WEBがある。
は、数式などを意味的に記述したものを数学的な書式で表示するためのツールであり、これを開発したクヌースは、そのドキュメントをEWBによって記載している。WEBは、プログラムの説明を記載したドキュメントであり、この中に説明を交えたプログラムを記載する。このドキュメントをツールにかけることで、綺麗にレイアウトしたドキュメントや、プログラムのソースコードを取り出すことができる。

クラス図

クラス図は、構造図の中の基本的な図で、 枠の中に、上段:クラス名、中段:属性(要素)、下段:メソッド(関数)を記載する。 属性やメソッドの可視性を示す場合は、”-“:private、”+”:public、”#”:protected 可視性に応じて、”+-#”などを記載する。

関連

クラスが他のクラスと関係がある場合には、その関係の意味に応じて、直線や矢印で結ぶ。
(a)関連:単純に関係がある場合、
(b)集約:部品として持つが、弱い結びつき。関係先が消滅しても別に存在可能。
(c)コンポジション:部品として持つが強い結びつき。関係先と一緒に消滅。
(d)依存:依存関係にあるだけ
(e)派生:派生・継承した関係
(f)実現: Javaでのinterfaceによる多重継承

上図の例では、乗り物クラスVehicleから自動車がCarが派生し、 自動車は、エンジン(Engine)を部品として持つ。エンジンは車体と一緒に廃棄なら、コンポジションで実装する。
自動車は、同じく車輪(Wheel)を4つ持つが、自動車を廃棄してもタイヤは別に使うかもしれないので、集約で実装する。 集約で実装する場合は、C++などであれば、ポインタで部品を持ち、部品の廃棄(delete)は、別に行うことになる。

is-a 、has-a の関係

前の課題でのFigureクラスで、Color 情報をどう扱うべきかで、悩んだ場合と同じように、 クラスの設計を行う場合には、部品として持つのか、継承として機能を持つのか悩む場合がある。 この場合には、“is-a”の関係“has-a”の関係で考えると、部品なのか継承なのか判断しやすい。

たとえば、上の乗り物(Vehicle)クラスと、車(Car)のクラスは、”Car is-a Vehicle” といえるので、is-a の関係。 “Car is-a Engine”と表現すると、おかしいことが判る。 車(Car)とエンジン(Engine)のクラスは、”Car has-a Engine”といえるので、has-a の関係となる。 このことから、CarはVehicleからの派生であり、Carの属性としてEngineを部品として持つ設計となる。

オブジェクト図

クラス図だけで表現すると、複雑なクラス関係では、イメージが分かりづらい場合がでてくる。 この場合、具体的な値を図に書き込んだオブジェクトで表現すると、説明がしやすい場合がある。 このように具体的な値で記述するクラス図は、オブジェクト図と言う。 書き方としては、クラス名の下に下線を引き、中段の属性の所には具体的な値を書き込んで示す。

その他の構成図

その他の構成図としては、コンポーネント図(物理的な構成要素から、システムの構造を表現する図)、 配置図(ハードウェアとアプリケーションの関係を図示したもの)、パッケージ図(パッケージ同士の関係をグループ化した図) なども用いる。

UMLの歴史と意味

プログラミングでの演習もほぼ終わり、オブジェクト指向での設計の話へ。 オブジェクト指向でUMLの書き方は、統一した図法という意味で重要であることを 示しながら、全体の説明を行う。

最初に、UML以前の説明として、フローチャート図やPADの説明を行う。 処理の流れを記載するものとして、使われてきているがデータ構造の設計も重要。

UMLは、ランボーによるOMT(Object Modeling Technique どちらかというとOOA中心?)と、 ヤコブソンによるオブジェクト指向ソフトウェア工学(OOSE)を元に1990年頃に 発生し、ブーチのBooch法(どちらかというとOOD中心?)の考えをまとめて、 UML(Unified Modeling Language)としてでてきた。

OMTでは、OOA(Object Oriented Analyze:分析中心)として(1)問題記述、(2)オブジェクトモデルの記述、(3)状態遷移図の作成、(4)データフロー図の作成といったプロセスが行われる。 これに、OOD(Object Oriented Design:実装目的)でOOA段階の図法に加え、 ユースケース図、シーケンス図などを加えながら設計を行う。 この2つをOOADとまとめる場合も多い。

UMLでよく使われる図を列記すると、以下の物が挙げられる。

  • 構造図
    • クラス図
    • コンポーネント図
    • 配置図
    • オブジェクト図
    • パッケージ図
  • 振る舞い図
    • アクティビティ図
    • ユースケース図
    • ステートチャート図(状態遷移図)
  • 相互作用図
    • シーケンス図
    • コミュニケーション図(コラボレーション図)

複雑な継承

課題で取り組んでもらっている、動物の進化を表すクラスの概要を示す。

動物・鳥類・哺乳類クラス

// 動物クラス
class Animal {
private:
  char name[ 10 ] ;
public:
  Animal( const char s[] ) {
    strcpy( name , s ) ;
  }
  const char* get_name() const { return name ; }
  virtual void move() = 0 ;
  virtual void birth() = 0 ;
} ;

// 鳥類クラス
class Bird : public Animal {
public:
  Bird( const char s[] ) : Animal( s ) {}
  virtual void move() {
    printf( "%s fry.\n" , get_name() ) ;
  }
  virtual void birth() {
    printf( "%s lay egg.\n" , get_name() ) ;
  }
} ;

// 哺乳類クラス
class Mammal : public Animal {
public:
  Mammal( const char s[] ) : Animal( s ) {}
  virtual void move() {
    printf( "%s walk.\n" , get_name() ) ;
  }
  virtual void birth() {
    printf( "%s lay baby.\n" , get_name() ) ;
  }
} ;

int main() {
  Bird chiken( "piyo" ) ;
  chiken.move() ;
  chiken.birth() ;
  Mammal cat( "tama" ) ;
  cat.move() ;
  cat.birth() ;
  return 0 ;
}

ここで、カモノハシを作るのであれば、どうすれば良いだろうか?

鳥類・哺乳類とは別にカモノハシを作る

class SeaBream : public Animal {
public:
  Mammal( const char s[] ) : Animal( s ) {}
  virtual void move() {
    printf( "%s walk.\n" , get_name() ) ;
  }
  virtual void birth() {
    printf( "%s lay egg.\n" , get_name() ) ;
  }
} ;

この例では、簡単な処理だが、move() の中身が複雑であれば、改めて move() を宣言するのではなく、継承するだけの書き方ができないだろうか?

多重継承

C++ には、複数のクラスから、派生する多重継承という機能がある。であれば、鳥類と哺乳類から進化したのだから、以下のように書きたい。

class SeaBream : public Bird , Mammal {
} ;

しかし、カモノハシに move() を呼び出すと、鳥類の move() と哺乳類の move() のどちらを動かすか曖昧になる。また、派生クラスは親クラスのデータ領域と、派生クラスのデータ領域を持つため、鳥類の name[] と、哺乳類の name[] を二つ持つことになる。

足と羽のクラス

class Animal {
private:
  char name[ 10 ] ;
public:
  Animal( const char s[] ) {
    strcpy( name , s ) ;
  }
  const char* get_name() const { return name ; }
  virtual void move() = 0 ;
} ;
// 羽
class Wing {
public:
   const char* move_method() { return "fly" ; }
} ;
// 
class Leg {
public:
   const char* move_method() { return "walk" ; }
} ;
class Bird : public Animal , Wind {
public:
  Bird( const char s[] ) : Animal( s ) {}
  virtual void move() {
    printf( "%s %s.\n" , get_name() , move_method() ) ;
  }
} ;
class Mammal : public Animal , Leg {
public:
  Mammal( const char s[] ) : Animal( s ) {}
  virtual void move() {
    printf( "%s %s.\n" , get_name() , move_method() ) ;
  }
} ;

# うーむ、継承する処理が1行程度でかける処理だと、どのやり方も「継承が便利」というように見えないな…(x_x;

class Animal {
private:
   char name[ 10 ] ;
public:
   Animal( const char s[] ) {
      strcpy( name , s ) ;
   }
   const char* get_name() const { return name ; }
   virtual void move() = 0 ;
   virtual void birth() = 0 ;
} ;

// 鳥類クラス
class Bird : public virtual Animal {
public:
   Bird( const char s[] ) : Animal( s ) {}
   virtual void move() {
      printf( "%s fry.\n" , get_name() ) ;
   }
   virtual void birth() {
      printf( "%s lay egg.\n" , get_name() ) ;
   }
} ;

// 哺乳類クラス
class Mammal : public virtual Animal {
public:
   Mammal( const char s[] ) : Animal( s ) {}
   virtual void move() {
      printf( "%s walk.\n" , get_name() ) ;
   }
   virtual void birth() {
      printf( "%s lay baby.\n" , get_name() ) ;
   }
} ;

class SeaBream : public virtual Bird , virtual Mammal {
public:
   SeaBream( const char s[] ) : Animal( s ) {}
   void move() {
      Mammal::move() ;
   }
   void birth() {
      Bird::birth() ;
   }
} ;

ただし、多重継承は親クラスの情報と、メソッドを継承する。この場合、通常だと name[] を二つ持つことになるので、問題が発生する。そこで、親クラスの継承に virtual を指定することで、ダイヤモンド型継承の 2つの属性をうまく処理してくれるようになる。

しかし、多重継承は処理の曖昧さや効率の悪さもあることから、採用されていないオブジェクト指向言語も多い。特に Java は、多重継承を使えない。その代わりに interface という機能が使えるようになっている。

仮想関数を用いた課題

第2回レポート課題

  1. 純粋仮想基底クラスの資料を参考に、複素数データ(直行座標系でも極座標でもよい)の並び替えを行うプログラムを作成せよ。ただし、(1)複素数専用の並び替え関数を作らないこと。(2)複素数用の比較関数を作ること。(3)Object型の並び替え my_sort() を使うこと。
  2. 生物を表す基底を作成し、以下の機能を持つ派生クラスを作成せよ。
    1. 生物クラスは、<名前>を持つ。
    2. 哺乳類クラス(Mammal)に、move() を実行すると、”<名前>は歩く”と表示すること。
    3. 哺乳類クラスに、spawn() を実行すると、”<名前>は子供を産む”と表示すること。
    4. 鳥クラス(Bird)に、move() を実行すると、”<名前>は飛ぶ”と表示すること。
    5. 鳥クラスに、spawn() を実行すると、”<名前>は卵を産む”と表示すること。
    6. 人間クラス(Human)に move() を実行すると、”<名前>は歩く”と表示されること。
    7. 人間クラスに spawn() を実行すると、”<名前>は子供を産む”と表示されること。
    8. にわとりクラス(Chiken)に、move(),spawn() を実行できること。
    9. かものはしクラス(SeaBream)を作るにはどうすればいいか考察せよ。
    class Creature {
    } ;
    class Mammal : ...... {
    } ;
    class Human : ...... {
    } ;
    class Bird : ...... {
    } ;
    class Chiken : ...... {
    } ;
    int main() {
       Mammal tama_cat( "tama" ) ;
       tama_cat.move() ;    // tamaは歩く
       tama_cat.spawn() ;   // tamaは子供を産む
    
       Human  jane_human( "jane" ) ;
       jane_human.move() ;  // janeは歩く
       jane_human.spawn() ; // janeは子供を産む
    
       Bird   tori_bird( "tori" ) ;
       tori_bird.move() ;   // toriは飛ぶ
       tori_bird.spawn() ;  // toriは卵を産む
    
       Chiken piyo_chiken( "PiyoPiyo" ) ;
       piyo_chiken.move() ; // PiyoPiyoは飛ぶ
       piyo_chiken.spawn() ;// PiyoPiyoは卵を産む
    
       SeaBream golduck( "golduck" ) ;
       golduck.move() ;     // golduckは歩く
       golduck.spawn() ;    // golduckは卵を産む
    }
    

純粋仮想基底クラス

前回説明した仮想関数では、基底クラスから派生させたクラスを作り、そのデータが混在してもクラスに応じた関数(仮想関数)を呼び出すことができる。

この仮想関数の機能を逆手にとったプログラムの記述方法として、純粋仮想基底クラスがある。その使い方を説明する。

純粋仮想基底クラス

純粋仮想基底クラスとは、見かけ上はデータを何も持たないクラスであり、本来なら意味がないデータ構造となってしまう。しかし、派生クラスで仮想関数で機能を与えることで、基底クラスという共通部分から便利な活用ができる。(実際には、型を区別するための情報を持っている)

例えば、一つの配列に、整数、文字列、実数といった異なる型のデータを記憶させることは本来ならできない。しかし、以下のような処理を記載すれば、可能となる。

// 純粋仮想基底クラス
class Object {
public:
   virtual void print() = 0 ;
   // 中身の無い純粋基底クラスで、
   // 仮想関数を記述しない時の書き方。
} ;

// 整数データの派生クラス
class IntObject : public Object {
private:
   int data ;
public:
   IntObject( int x ) {
      data = x ;
   }
   virtual void print() {
      printf( "%d\n" , data ) ;
   }
} ;

// 文字列の派生クラス
class StringObject : public Object {
private:
   char data[ 100 ] ;
public:
   StringObject( const char* s ) {
      strcpy( data , s ) ;
   }
   virtual void print() {
      printf( "%s\n" , data ) ;
   }
} ;

// 実数の派生クラス
class DoubleObject : public Object {
private:
   double data ;
public:
   DoubleObject( double x ) {
      data = x ;
   }
   virtual void print() {
      printf( "%lf\n" , data ) ;
   }
} ;

// 動作確認
int main() {
   Object* data[3] = {
      new IntObject( 123 ) ,
      new StringObject( "abc" ) ,
      new DoubleObject( 1.23 ) ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) { // 123
      data[i]->print() ;            // abc
   }                                // 1.23 と表示
   return 0 ;
} ;

このプログラムでは、純粋仮想基底クラスObjectから、整数IntObject, 文字列StringObject, 実数DoubleObject を派生させ、そのデータを new により生成し、Objectの配列に保存している。

様々な型に適用できるプログラム

次に、純粋仮想基底クラスの特徴を応用したプログラムの作り方を説明する。

例えば、以下のような最大選択法で配列を並び替えるプログラムがあったとする。

int a[5] = { 11, 55, 22, 44, 33 } ;

void my_sort( int array[] , int size ) {
   for( int i = 0 ; i < size - 1 ; i++ ) {
      int max = i ;
      for( int j = i + 1 ; j < size ; j++ ) {
         if ( array[j] > array[max] )
            max = j ;
      }
      int tmp = array[i] ;
      array[i] = array[max] ;
      array[max] = tmp ;
   }
}
int main() {
   my_sort( a , 5 ) ;
}

しかし、この整数を並び替えるプログラムがあっても、文字列の並び替えや、実数の並び替えがしたい場合には、改めて文字列用並び替えの関数を作らなければいけない。しかも、ほとんどが同じような処理で、改めて指定された型のためのプログラムを作るのは面倒である。

C言語のデータの並び替えを行う、qsort() では、関数ポインタを用いることで、様々なデータの並び替えができる。

#include <stdio.h>
#include <stdlib.h>
int a[ 4 ] = { 11, 33, 22, 44 } ;
double b[ 3 ] = { 1.23 , 5.55 , 0.11 } ;
// 並び替えを行いたいデータ専用の比較関数を作る
// a>bなら+1, a=bなら0, a<bなら-1を返す関数
int cmp_int( int* pa , int* pb ) {
   return *pa - *pb ;
}
int cmp_double( double* pa , double* pb ) {
   if ( *pa == *pb )
      return 0 ;
   else if ( *pa > *pb )
      return 1 ;
   else
      return -1 ;
}
int main() {
   qsort( a , 4 , sizeof( int ) ,
          (int(*)(void*,void*)) cmp_int ) ;
   qsort( b , 3 , sizeof( double ) ,
          (int(*)(void*,void*)) cmp_double ) ;
} 

任意のデータを並び替え

class Object {
public:
   virtual void print() = 0 ;
   virtual int cmp( Object* ) = 0 ;
} ;

// 整数データの派生クラス
class IntObject : public Object {
private:
   int data ;
public:
   IntObject( int x ) {
      data = x ;
   }
   virtual void print() {
      printf( "%d\n" , data ) ;
   }
   virtual int cmp( Object* p ) {
      int pdata = ((IntObject*)p)->data ;
      return data - pdata ;
   }
} ;

// 文字列の派生クラス
class StringObject : public Object {
private:
   char data[ 100 ] ;
public:
   StringObject( const char* s ) {
      strcpy( data , s ) ;
   }
   virtual void print() {
      printf( "%s\n" , data ) ;
   }
   virtual int cmp( Object* p ) {
      char* pdata = ((StringObject*)p)->data ;
      return strcmp( data , pdata ) ; // 文字列比較関数
   }
} ;

// 実数の派生クラス
class DoubleObject : public Object {
private:
   double data ;
public:
   DoubleObject( double x ) {
      data = x ;
   }
   virtual void print() {
      printf( "%lf\n" , data ) ;
   }
   virtual int cmp( Object* p ) {
      double pdata = ((DoubleObject*)p)->data ;
      if ( data == pdata )
         return 0 ;
      else if ( data > pdata )
         return 1 ;
      else
         return -1 ;
   }
} ;

// Objectからの派生クラスでcmp()メソッドを
//   持ってさえいれば、どんな型でもソートができる。
void my_sort( Object* array[] , int size ) {
   for( int i = 0 ; i < size - 1 ; i++ ) {
      int max = i ;
      for( int j = i + 1 ; j < size ; j++ ) {
         if ( array[j]->cmp( array[max] ) > 0 )
            max = j ;
      }
      Object* tmp = array[i] ;
      array[i] = array[max] ;
      array[max] = tmp ;
   }
}
// 動作確認
int main() {
   Object* idata[3] = {
      new IntObject( 11 ) ,
      new IntObject( 33 ) ,
      new IntObject( 22 ) ,
   } ;
   Object* sdata[3] = {
      new StringObject( "abc" ) ,
      new StringObject( "defghi" ) ,
      new StringObject( "c" ) ,
   } ;
   my_sort( idata , 3 ) ; // 整数のソート
   for( int i = 0 ; i < 3 ; i++ )
      idata[i]->print() ;
   my_sort( sdata , 3 ) ; // 文字列のソート
   for( int i = 0 ; i < 3 ; i++ )
      sdata[i]->print() ;
   return 0 ;
} ;

このような方式でプログラムを作っておけば、新しいデータ構造がでてきてもソートのプログラムを作らなくても、比較専用の関数 cmp() を書くだけで良い。

ただし、この並び替えの例では、Object* を IntObject* に強制的に型変換している。
また、このプログラムでは、データを保管するために new でポインタを保管し、データの比較をするために仮想関数の呼び出しを行うことから、メモリの使用効率も処理効率でもあまりよくない。

こういう場合、最近の C++ ではテンプレート機能が使われる。

template <typename T>
void my_sort( T a[] , int size ) {
  for( int i = 0 ; i < size - 1 ; i++ ) {
    int max = i ;
    for( int j = i + 1 ; j < size ; j++ ) { if ( a[j] > a[max] )
        max = j ;
    }
    T  tmp = a[i] ;
    a[i] = a[max] ;
    a[max] = tmp ;
  }
}

int main() {
  int idata[ 5 ] = { 3, 4, 5 , 1 , 2 } ;
  double fdata[ 4 ] = { 1.23 , 0.1 , 3.4 , 5.6 } ;
  my_sort( idata , 5 ) ;
  for( int i = 0 ; i < 5 ; i++ )
    printf( "%d " , idata[i] ) ;
  printf( "\n" ) ;
  my_sort( fdata , 4 ) ;
  for( int i = 0 ; i < 4 ; i++ )
    printf( "%lf " , fdata[i] ) ;
  printf( "\n" ) ;
  return 0 ;
}

C++のテンプレート機能は、my_sort( int[] , int ) で呼び出されると、typename T = int で、整数型用の my_sort() の処理が自動的に作られる。同じく、my_sort( double[] , int ) で呼び出されると、typename = double で 実数型用の my_sort() が作られる。