WWWとhttpとサーチエンジン
最初に、前回講義で説明が不十分だったメールの機能について説明のあと、Web の説明を行う。
WWWとhttp
WWWとは、ティム・バーナーズ=リーによって作られたサービスであり、元々は研究データの論文やデータの共有のために作られた。この際のWebサーバのデータのやり取りのためのプロトコルがhttp(Hyper Text Transfer Protocol)であり、ポート番号80のTCPを用いたものであり、最近では通信を暗号化したhttps(ポート番号443)も多く使われる。
httpでは、文字データの中に画像や音声といった情報に加え、他のデータへのリンクを埋め込むことができる HTML(Hyper Text Markup Language) のデータがやりとりされる。このHTML形式のデータを表示するためのソフトは、ブラウザと呼ばれる。
URL
WWWのデータの場所を示すものが、URL(Uniformed Resource Locator)であるが、最近ではインターネットが複雑化しLocator という表現が難しいため、URI(Uniformed Resource Identifier)と呼ぶようになってきた。
URLは基本的に、スキーマ://コンピュータ名/サーバ内ファイル位置 といった文字で構成される。URL は、HTTP だけでなく、インターネットの情報の場所を記述するために使われており、httpやhttps以外にも使う。
最近のブラウザは、スキーマ欄の”https://”やコンピュータ名の先頭の”www.”を省略することができる。また http は暗号通信を使わず危険であることから、警告メッセージが表示されたり、可能であれば https の通信に切り替えを試みられる。
http (Hyper Text Transfer Protocol) の流れ
httpのサーバ(Webサーバ)とブラウザでは、以下のような手順で処理が行われる。例えば http://www.ei.fukui-nct.ac.jp/~t-saitoh/index.html のページが表示されるまでを考えると、
- ブラウザのURL欄に、目的サイトのURLを入力。
- 基本的には、スキーマ欄に記載されたプロトコル(http)名から、ポート番号と通信方法(http)を決める。一般的な http 通信では、ポート番号には 80 を使う。
- コンピュータ名部分(www.ei.fukui-nct.ac.jp)を DNS に問合せして、得られたIPアドレスのコンピュータに接続。
- httpの最も簡単な GET メソッドでは、Webサーバに、サーバ内のファイル位置(/~t-saitoh/index.html)を伝えると、Webサーバは応答ヘッダ情報と応答本文の指定された場所のファイルの内容を返送する。(下図参照)
- HTML形式のデータが指定された場合、ブラウザはその HTML をどの様に表示するか判断しながら表示する。
このような予め保存されているWebページを返送する場合は静的ページと呼ばれる。サーバのデータベースなどを参照しながらページ内容を返送する場合は、動的ページと呼ばれ、Webサーバ内部でプログラムを動作させ、その結果のデータをブラウザに返す。
動的ページを生成するためのプログラム言語としては、様々な方法がある。(バックエンド言語)
- 言語 Perl による CGI(Common Gateway Interface)
- Webに特化した言語PHP
- サーバで 言語 Java を使ってページデータを生成(Apache Tomcat)
- サーバで 言語 JavaScript を使ってページデータを生成(Node.js)
また、最近のブラウザでは JavaScript を使って、Webページに表示される内容を動的に変化させることが多い。(フロントエンド)
https
httpでは、通信が平文で行われるため、同じサブネット内であれば通信内容を盗み見られる可能性がある。この通信を暗号化しながら行われるものが https である。ポート番号には一般的に 443 が使われる。暗号化通信は次週以降に説明を行う。
サーチエンジン
インターネットでは、大量のWebページが出現してきたため、自分の目的に応じてWebページを探す機能が必要となってきた。このような目的のWebページを検索してくれるシステムは、サーチエンジンと呼ばれる。
ディレクトリ型
最初に現れた検索システム(1994年)は、ページ作者が自分のページのURLと内容となるキーワードをサーチエンジンに登録しておき、内容のカテゴリー別に、ページの紹介文章が表示されるディレクトリ型であった。(初期のYahoo)
しかし、登録するキーワード以外の文字で探そうとすると、情報を見つけることができない。
ロボット型
これらの問題を解決すべく登場したのが、Google のようなロボット型サーチエンジン(1997年)である。
ロボット型の検索システムでは、クローラーとかロボット(あるいはボット)とか呼ばれるプログラムを使い、Webページの内容をダウンロードし、そこに記載された文字を使ってURLのデータベースを作成する。
- 与えられた URL の先のページをダウンロードする。
- ページ内の文字を単語に切り分けして、それぞれの単語とURLを関連付けてデータベースに保存
- ページ内にリンクが含まれていたら、そのURLで、この作業を再帰的に繰り返す。
サーチエンジンで検索が行われると、クローラーの処理で作られたデータベースに問い合わせ、見つかったURLの情報を表示する。
Googleなどでは、多くのユーザが探したいページを提供するために、たくさん使われている単語を重要語としたり、たくさんのページからリンクされているページを表示順上位に表示するような工夫をしている。
ページランキングを上げるためのWebページの工夫をすることを、SEO (Search Engine Optimization) という。しかし逆にページランキングを不当に上げようと特殊なテクニックのページ作りをする人もいるが、最近では不当なページ作りは逆にランキングが落とされるようになっている。
理解度確認
- URLが与えられてページが見れるまでに行われることを説明せよ。
- サーチエンジンのディレクトリ型とロボット型の違いを説明せよ。
トランザクション処理
トランザクション処理
トランザクション処理とは、相互に依存関係にある複数の処理を矛盾なく処理することであり、データベースでは、ACID特性(原子性,一貫性,隔離性,耐久性)がもとめられる。この時、直列化可能(様々な順序で処理できるかもしれないけど、矛盾しない結果となる処理順序が存在すること)であることが求められる。
例えば、以下のように、50万円のデータがあった時、入金処理と出金処理がほぼ同じタイミングで開始された場合、入金処理が終わらないうちに、出金処理が開始されると、以下の例では入金処理が無視されてしまう。
上記のような問題が発生しないようにするには、以下のように、入金処理の時点で他の更新処理を排除するLOCK処理を行い、入金データの書き込みを終えた時点でUNLOCK処理を行う、排他処理が重要となる。(ロックされている間は、アクセスを禁止する。)
排他処理の実装方法
排他処理を実現する方法としては、ロック(Lock)、セマフォ(Semaphore)、ミューテックス(Mutex)が使われる。
ロックの例としては、C言語では flock() 関数が有名。(後述のロッキング方式/悲観的制御を参照)
- C言語でのファイルロック(共有ロック,排他ロックの機能あり)
- 共有ロック:他のプロセスの読み込みは許可するけど、書き込みは禁止。
- 排他(占有)ロック:他のプロセスの読み込みも書き込みも禁止する。
- 使い終わったらアンロック。
セマフォの例としては、カウンタセマフォが使われる。
- 対象資源を使用中のプロセスの数を表す、カウンタを使う。
- 初期値0の状態は、だれも使っていない状態。
- 対象資源を使う時にカウントアップ、使い終わったらカウントダウンする。
ミューテックスは、セマフォの使用中/開放状態を 0,1 で管理するようなもの。
ロックはファイルに対して使うもので、セマフォやミューテックスは、プロセスやスレッド間の同期に使うことが多い。
同時実行制御
複数のトランザクションによるデータアクセスで、トランザクション処理を直列化可能にすることを、同時実行制御と呼ぶ。この方式には、2つの方法がある。
- ロッキング方式(悲観的制御)
先行するトランザクションは、データにロックをかけ、他のトランザクションを一時的に排除する方式。後発の処理はアンロックされるまで待たされることことから、これが処理効率の低下となる。- ロッキング方式では、ロックをかける大きさ(粒度)が大きいと、待ち処理が発生する可能性が高い。一方で、粒度を小さくしようとすると、ロックの判定が難しくなり効率が低下する可能性も出てくる。
- ロックの種類
ロックには、読み出し中心のデータと書き込みで更新のかかるデータでは、ロックのかけ方が異なる。例えば、読み出し中のデータは値が変化しないことから、同じタイミングで読み出し処理が発生しても、待たせる必要は無い。
この時、データを読み出す際にかける共有ロック(Read Lock)と、書き込みの際にかけるロック占有ロック(Write Lock)がある。 - 2相ロッキングプロトコル
トランザクションのロックの操作は、ロックをかける操作が続く成長相と、ロックを解除する操作が続く縮退相に分けて行うことが多い。これを2相ロッキングプロトコルと言う。
- ロッキング方式では、ロックをかける大きさ(粒度)が大きいと、待ち処理が発生する可能性が高い。一方で、粒度を小さくしようとすると、ロックの判定が難しくなり効率が低下する可能性も出てくる。
- 時刻印方式/タイムスタンプ方式(楽観的制御)
データの競合の発生頻度が低い場合には、ロッキング方式は待ち処理時間が無駄となるため、同時アクセスを許す方式。ただし、あとで処理の発生した時間(タイムスタンプ)を確認し不都合が判明した場合は、処理の記録をもとにロールバックしてやり直す方式。
デッドロック
複数のトランザクションの実行時には、相互の関係から、処理がうまく進まない場合も発生する。(お互いが相手の処理をロックする状態で、ロック解除が発生しない。)
このような状態をデッドロックと呼び、この状態が発生すると処理が停止してしまうこともある。このような状態は、避けられない場合もあるが、どの処理が何を使うのか、どのデータはどの処理の終了を待っているのかといった資源の状態をグラフ理論で表現したもの資源グラフをで表現し、グラフが巡回するようであれば、デッドロックが発生する可能性がある。
グラフ理論(Wikipedia)
前述の資源グラフをコンピュータで扱う場合には、グラフ理論が用いられる。グラフ理論では、ノード間の接続に方向の概念が無い物は無向グラフと呼ぶ。また、ノードの接続関係は隣接行列で表現する。行と列がそれぞれノードに対応付け経路が存在する場所を1で表す。データベースの資源グラフのような方向性がある場合は有向グラフと呼び、始点(行)と終点(列)の経路がある所を1で表す。