ホーム » 2023 » 10月 » 02

日別アーカイブ: 2023年10月2日

2023年10月
1234567
891011121314
15161718192021
22232425262728
293031  

検索・リンク

ランダムアクセス・シーケンシャルアクセスから双方向リスト

ランダムアクセスO(1)とシーケンシャルアクセスO(N)の説明を踏まえ、リスト構造のO(N)の改善にむけた解説を行う。

リスト構造の利点と欠点

リストを使った集合演算のように、データを連ねたリストは、単純リストとか線形リストと呼ばれる。特徴はデータ数に応じてメモリを確保する点や、途中へのデータの挿入削除が得意な点があげられる。一方で、配列は想定最大データ件数で宣言してしまうと、実際のデータ数が少ない場合、メモリの無駄も発生する。しかし、想定件数と実データ件数がそれなりに一致していれば、無駄も必要最小限となる。リスト構造では、次のデータへのポインタを必要とすることから、常にポインタ分のメモリは、データにのみ注目すれば無駄となる。

例えば、整数型のデータを最大 MAX 件保存したいけど、実際は それ以下の、平均 N 件扱うとする。この時のメモリの使用量 M は、以下のようになるであろう。

配列の場合 リスト構造の場合

(ただしヒープ管理用メモリ使用量は無視)

シーケンシャルアクセス・ランダムアクセス

もう1つのリストの欠点はシーケンシャルアクセス。テープ上に記録された情報を読む場合、後ろのデータを読むには途中データを読み飛ばす必要があり、データ件数に比例したアクセス時間を要する。このような N番目 データ参照に、O(N)の時間を要するものは、シーケンシャルアクセスと呼ばれる。

一方、配列はどの場所であれ、一定時間でデータの参照が可能であり、これは ランダムアクセスと呼ばれる。N番目のアクセス時間がO(1)を要する。配列であれば、N/2 番目のデータをO(1)で簡単に取り出せるから2分探索法が有効だが、リスト構造であれば、N/2番目のデータを取り出すのにO(N)かかってしまう。

このため、プログラム・エディタの文字データの管理などに単純リストを用いた場合、1つ前の行に移動するには、先頭から編集行までの移動で O(N) の時間がかかり、大量の行数の編集では、使いものにならない。ここで、シーケンシャルアクセスでも1つ前にもどるだけでも処理時間を改善してみよう。

単純リストから双方向リストへ

ここまで説明してきた単純リストは、次のデータへのポインタを持つ。ここで、1つ後ろのデータ(N番目からN+1番目)をアクセスするのは簡単だけど、1つ前のデータ(N-1番目)を参照しようと思ったら、先頭から(N-1)番目を辿るしかない。でも、これは O(N) の処理であり時間がかかる処理。
ではどうすればよいのか?

この場合、一つ前のデータの場所を覚えているポインタがあれば良い。

// 双方向リストの宣言
struct BD_List {
    struct BD_List* prev ; // 1つ前のデータへのポインタ
    int             data ;
    struct BD_List* next ; // 次のデータへのポインタ
} ;

このデータ構造は、双方向リスト(bi-directional list)と呼ばれる。では、簡単なプログラムを書いてみよう。双方向リストのデータを簡単に生成するための補助関数から書いてみる。

// リスト生成補助関数
struct BD_List* bd_cons( struct BD_List* p ,
                         int d ,
                         struct BD_List* n ) {
    struct BD_List* ans ;
    ans = (struct BD_List*)malloc(
                         sizeof( struct BD_List ) ) ;
    if ( ans != NULL ) {
        ans->prev = p ;
        ans->data = d ;
        ans->next = n ;
    }
    return ans ;
}
void main() {
    struct BD_List* top ;
    struct BD_List* p ;

    // 順方向のポインタでリストを生成
    top = bd_cons( NULL , 1 ,
          bd_cons( NULL , 2 ,
          bd_cons( NULL , 3 , NULL ) ) ) ;
    // 逆方向のポインタを埋める
    top->next->prev = top ;
    top->next->next->prev = top->next ;

    // リストを辿る処理
    for( p = top ; p->next != NULL ; p = p->next )
        printf( "%d\n" , p->data ) ;
    for(         ; p->prev != NULL ; p = p->prev )
        printf( "%d\n" , p->data ) ;
}

双方向リストの関数作成

以上の説明で、双方向の基礎的なプログラムの意味が分かった所で、練習問題。

先のプログラムでは、1,2,3 を要素とするリストを、ナマで記述していた。実際には、どんなデータがくるか分からないし、指定したポインタ p の後ろに、データを1件挿入する処理 bd_insert( p , 値 ) , また、p の後ろのデータを消す処理 bd_delete( p ) を書いてみよう。

// 双方向リストの指定場所 p の後ろに、値 d を要素とするデータを挿入せよ。
void bd_insert( struct BD_List* p , int d ) {
   struct BD_List*n = bd_cons( p , d , p->next ) ;
   if ( n != NULL ) {
      p->next->prev = n ;
      p->next = n ;
   }
}

// 双方向リストの指定場所 p の後ろのデータを消す処理は?
void bd_delete( struct BD_List* p ) {
   struct BD_List* d = p->next ;
   d->next->prev = p ;
   p->next = d->next ;
   free( d ) ;
}

// この手のリスト処理のプログラムでは、命令の順序が重要となる。
// コツとしては、修正したい箇所の遠くの部分を操作する処理から
// 書いていくと間違いが少ない。

システム

最新の投稿(電子情報)

アーカイブ

カテゴリー