ホーム » 2020 » 7月 » 20

日別アーカイブ: 2020年7月20日

2020年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

最近の投稿(電子情報)

アーカイブ

カテゴリー

スタックと待ち行列

前回の授業では、リストの先頭にデータを挿入する処理と、末尾に追加する処理について説明したが、この応用について説明する。

計算処理中に一時的なデータの保存として、stackとqueueがよく利用される。それを配列を使って記述したり、任意の大きさにできるリストを用いて記述することを示す。

スタック

配列を用いたスタック

一時的な値の記憶によく利用されるスタック(stack)は、データの覚え方の特徴からLIFO( Last In First out )とも呼ばれる。配列を使って記述すると以下のようになるであろう。

#define STACK_SIZE 32
int stack[ STACK_SIZE ] ;
int sp = 0 ;

void push( int x ) { // データをスタックの一番上に積む
    stack[ sp++ ] = x ;
}
int pop() { // スタックの一番うえのデータを取り出す
    return stack[ --sp ] ;
}
void main() {
    push( 1 ) ; push( 2 ) ; push( 3 ) ;
    printf( "%d\n" , pop() ) ; // 3
    printf( "%d\n" , pop() ) ; // 2
    printf( "%d\n" , pop() ) ; // 1
}

++,–の前置型と後置型の違い

// 後置インクリメント演算子
int i = 100 ;
printf( "%d" , i++ ) ;
// これは、
printf( "%d" , i ) ;
i++ ;
// と同じ。100が表示された後、101になる。

// 前置インクリメント演算子
int i = 100 ;
printf( "%d" , ++i ) ;
//   これは、
i++ ;
printf( "%d" , i ) ;
// と同じ。101になった後、101を表示。

リスト構造を用いたスタック

しかし、この中にSTACK_SIZE以上のデータは貯えられない。同じ処理をリストを使って記述すれば、配列サイズの上限を気にすることなく使うことができるだろう。では、リスト構造を使ってスタックの処理を記述してみる。

struct List* stack = NULL ;

void push( int x ) { // リスト先頭に挿入
    stack = cons( x , stack ) ;
}
int pop() { // リスト先頭を取り出す
    int ans = stack->data ;
    struct List* d = stack ;
    stack = stack->next ;
    free( d ) ;
    return ans ;
}

キュー(QUEUE)

2つの処理の間でデータを受け渡す際に、その間に入って一時的にデータを蓄えるためには、待ち行列(キュー:queue)がよく利用される。 データの覚え方の特徴からFIFO(First In First Out)とも呼ばれる。

配列を用いたQUEUE / リングバッファ

配列にデータを入れる場所(wp)と取り出す場所のポインタ(rp)を使って蓄えれば良いが、配列サイズを超えることができないので、データを取り出したあとの場所を循環して用いるリングバッファは以下のようなコードで示される。

#define QUEUE_SIZE 32
int queue[ QUEUE_SIZE ] ;
int wp = 0 ; // write pointer(書き込み用)
int rp = 0 ; // read  pointer(読み出し用)

void put( int x ) { // 書き込んで後ろ(次)に移動
    queue[ wp++ ] = x ;
    if ( wp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        wp = 0 ;
}
int get() { // 読み出して後ろ(次)に移動
    int ans = queue[ rp++ ] ;
    if ( rp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        rp = 0 ;
    return ans ;
}
void main() {
    put( 1 ) ; put( 2 ) ; put( 3 ) ;
    printf( "%d\n" , get() ) ; // 1
    printf( "%d\n" , get() ) ; // 2
    printf( "%d\n" , get() ) ; // 3
}

このようなデータ構造も、get() の実行が滞るようであれば、wp が rp に循環して追いついてしまう。このため、上記コードはまだエラー対策としては不十分である。どのようにすべきか?

リスト構造を用いたQUEUE

前述のリングバッファもget()しないまま、配列上限を越えてput()を続けることはできない。

この配列サイズの上限問題を解決したいのであれば、リスト構造を使って解決することもできる。この場合のプログラムは、以下のようになるだろう。

struct List* queue = NULL ;
struct List** tail = &queue ;

void put( int x ) { // リスト末尾に追加
    *tail = cons( x , NULL ) ;
    tail = &( (*tail)->next ) ;
}
int get() { // リスト先頭から取り出す
    int ans = queue->data ;
    struct List* d = queue ;
    queue = queue->next ;
    free( d ) ;
    return ans ;
}

ただし、上記のプログラムは、データ格納後にget()で全データを取り出してしまうと、tail ポインタが正しい位置になっていないため、おかしな状態になってしまう。
また、このプログラムでは、rp,wp の2つのポインタで管理することになるが、 2重管理を防ぐために、リストの先頭と末尾を1つのセルで管理する循環リストが使われることが多い。

理解確認

  • 配列を用いたスタック・待ち行列は、どのような処理か?図などを用いて説明せよ。
  • リスト構造を用いたスタック・待ち行列について、図などを用いて説明せよ。
  • スタックや待ち行列を、配列でなくリスト構造を用いることで、どういう利点があるか?欠点があるか説明せよ。

オブジェクト指向とソフトウェア工学

オブジェクト指向プログラミングの最後の総括として、 ソフトウェア工学との説明を行う。

トップダウン設計とウォーターフォール型開発

ソフトウェア工学でプログラムの開発において、一般的なサイクルとしては、 専攻科などではどこでも出てくるPDCAサイクル(Plan, Do, Check, Action)が行われる。 この時、プログラム開発の流れとして、大企業でのプログラム開発では一般的に、 トップダウン設計とウォーターフォール型開発が行われる。

トップダウン設計では、全体の設計(Plan)を受け、プログラムのコーディング(Do)を行い、 動作検証(Check)をうけ、最終的に利用者に納品し使ってもらう(Action)…の流れで開発が行われる。設計の中身も機能仕様や動作仕様…といった細かなフェーズになることも多い。 この場合、コーディングの際に設計の不備が見つかり設計のやり直しが発生すれば、 全行程の遅延となることから、前段階では完璧な設計が必要となる。 このような、上位設計から下流工程にむけ設計する方法は、トップダウン設計などと呼ばれる。また、処理は前段階へのフィードバック無しで次工程へ流れ、 川の流れが下流に向かう状態にたとえ、ウォーターフォールモデルと呼ばれる。

引用:Think IT 第2回開発プロセスモデル

このウォーターフォールモデルに沿った開発では、横軸時間、縦軸工程とした ガントチャートなどを描きながら進捗管理が行われる。

引用:Wikipedia ガントチャート

一方、チェック工程(テスト工程)では、 要件定義を満たしているかチェックしたり、設計を満たすかといったチェックが存在し、 テストの前工程にそれぞれ対応した機能のチェックが存在する。 その各工程に対応したテストを経て最終製品となる様は、V字モデルと呼ばれる。

引用:@IT Eclipseテストツール活用の基礎知識

しかし、ウォーターフォールモデルでは、(前段階の製作物の不備は修正されるが)前段階の設計の不備があっても前工程に戻るという考えをとらないため、全体のPDCAサイクルが終わって次のPDCAサイクルまで問題が残ってしまう。巨大プロジェクトで大量の人が動いているだから、簡単に方針が揺らいでもトラブルの元にしかならないことから、こういった手法は大人数巨大プロジェクトでのやり方である。

ボトムアップ設計とアジャイル開発

少人数でプログラムを作っている時(あるいはプロトタイプ的な開発)には、 部品となる部分を完成させ、それを組合せて全体像を組み上げる手法もとられる。 この方法は、ボトムアップ設計と呼ばれる。このような設計は場当たり的な開発となる場合があり設計の見直しも発生しやすい。

また、ウォーターフォールモデルでは、前工程の不備をタイムリーに見直すことができないが、 少人数開発では適宜前工程の見直しが可能となる。 特にオブジェクト指向プログラミングを実践して隠蔽化が正しく行われていれば、 オブジェクト指向によるライブラリの利用者への影響を最小にしながら、ライブラリの内部設計の見直しも可能となる。 このような外部からの見た挙動を変えることなく内部構造の改善を行うことリファクタリングと呼ばれる。

一方、プログラム開発で、ある程度の規模のプログラムを作る際、最終目標の全機能を実装したものを 目標に作っていると、全体像が見えずプログラマーの達成感も得られないことから、 機能の一部分だけ完成させ、次々と機能を実装し完成に近づける方式もとられる。 この方式では、機能の一部分の実装までが1つのPDCAサイクルとみなされ、 このPDCAサイクルを何度も回して機能を増やしながら完成形に近づける方式とも言える。 このような開発方式は、アジャイルソフトウェア開発と呼ぶ。 一つのPDCAサイクルは、アジャイル開発では反復(イテレーション)と呼ばれ、 短い開発単位を繰り返し製品を作っていく。この方法では、一度の反復後の実装を顧客に見てもらい、 顧客とプログラマーが一体となって開発が行われる。

引用:コベルコシステム

エクストリームプログラミング

アジャイル開発を行うためのプログラミングスタイルとして、 エクストリームプログラミング(Xp)という考え方も提唱されている。 Xpでは、5つの価値(コミュニケーション,シンプル,フィードバック,勇気,尊重)を基本とし、 開発のためのプラクティス(習慣,実践)として、 テスト駆動開発(コーディングでは最初に機能をテストするためのプログラムを書き、そのテストが通るようにプログラムを書くことで,こまめにテストしながら開発を行う)や、 ペアプログラミング(2人ペアで開発し、コーディングを行う人とそのチェックを行う人で役割分担をし、 一定期間毎にその役割を交代する)などの方式が取られることが多い。

リーンソフトウェア開発は、品質の良いものを作る中で無駄の排除を目的とし、本当にその機能は必要かを疑いながら、優先順位をつけ実装し、その実装が使われているのか・有効に機能しているのかを評価ながら開発をすすめる。

伽藍(がらん)とバザール

これは、通常のソフトウェア開発の理論とは異なるが、重要な開発手法の概念なので「伽藍とバザール」を紹介する。

伽藍(がらん)とは、優美で壮大な寺院のことであり、その設計・開発は、優れた設計・優れた技術者により作られた完璧な実装を意味している。バザールは有象無象の人の集まりの中で作られていくものを意味している。

たとえば、伽藍方式の代表格である Microsoft の製品は、優秀なプロダクトだが、中身の設計情報などを普通の人は見ることはできない。このため潜在的なバグが見つかりにくいと言われている。

これに対しバザール方式の代表格の Linux は、インターネット上にソースコードが公開され、誰もがソースコードに触れプログラムを改良してもいい。その中で、新しい便利な機能を追加しインターネットに公開されれば、良いコードは生き残り、悪いコードは淘汰されていく。

バザール方式は、オープンソースライセンスにより成り立っていて、このライセンスが適用されていれば、改良した機能はインターネットに公開する義務を引き継ぐ。このライセンスの代表格が、GNU パブリックライセンス(GPL)であり、公開の義務の範囲により、BSD ライセンスApacheライセンスといった違いがある。