2025年6月
1234567
891011121314
15161718192021
22232425262728
2930  

検索・リンク

データと誤差(クラフテックラボ)

電子情報工学科のジュニアドクター養成講座・クラフテックラボでは、9/12(日)に、データと誤差の講座を行いました。
ストップウォッチでの時間の測定の実験を通して、誤差のズレやばらつきについて考えてもらう内容でした。
{CAPTION}

{CAPTION}

緊急連絡システムにSendGridを使ったら

丹南地区の緊急連絡システムを動かしているけど、最近はメールが届かないといった連絡を受けることも多い。

2021/09/10 については、docomo.ne.jp 宛のメールの配送でトラブルが発生し、設定を見直すことで無事に配送ができるように復旧することができました。

基本的に無料で提供しているサービスだけれど、Azure のサーバから送信すると、迷惑メールの送信者と誤認される可能性が高く、最近のキャリアではメールが届かないなどの問題が起こりやすい。

正しく配信されるようにするために、サーバを信用してもらえるような構成にすることも考えられるが、設定のメンテナンスの負担も懸念される。そこで、Azure サーバでメールを配信するための、有料サービス SendGrid を使うことを検討してみた。

最初に、有料システムを利用することになるので、どの課金体系を利用するのかを判断するために、現在の緊急連絡システムの月別のメール流量を集計してみた。この結果、最近ではコロナによる連絡も多いのか平均4万通/月のメールが流れている。多い時には、10万通を超える場合もある。(下図参照)

これを、元にSendGrid を使った場合の費用を算出してみる。一番安い料金 “Essencial 4k” では、1900円/月 (4万通/月,これ以上は、0.125円/通)、”Essencial 10k” では、3800円/月(10万通/月, これ以上は0.094円/通)となる。これを見ると、現状の平均 4万通 からしても Essencial 4k を採用すれば、約 年額 45,000 円 以下に収まると思われる。(下図参照)

 

教員室にhomebridge導入

自宅では、iPhoneとの連動で、Raspberry-Pi にhomebridgeを入れて、家電制御で便利に使っているけど、教員室の Linux サーバにも導入してみた。

自分のスマホに ping で所在確認するプラグインと、自室の在室や予定を表示している掲示板システムを操作するプラグインを入れてみた。

在室状態に応じて掲示板にメッセージを表示していたけど、更新間隔が1時間おきとかなので、「不在表示なのに居るじゃん…」とか学生からのチェックが入るので、ドアや充電器の所に置いてあるNFCをタッチすると、掲示板の在室/不在表示+予定表示するようにしてみた。

# 以前から同様なことはしていたけど、手抜き Web API 経由だったのを、ホームアクセサリとして動かしてみた。

変態コード

Twitterで以下のようなコードが紹介されていた。
ポイントは、a[i] と書くべき所が、*(a + i) と等価であり、*(i + a) = i[a] と書かれている点。

{CAPTION}

でも、昔どこかで見たという点では、以下のコードの方がさらに変態っぽいでしょ。

{CAPTION}

8/14(土)学校周辺のハザードマップ

福井県は、大きく心配するほどじゃないけど、危険性の確認。吉野瀬川の方が先に危なくなるらしい。
{CAPTION}

ゼロトラスト研究会

EVER/IPのコネクトフリーさんが、鯖江市・越前市・福井県・地元企業と協力して、EVER/IPの活用を見いだすためのゼロトラスト研究会が行われました。

{CAPTION}

ゼロトラストとは

  • LANなどの小さなネットワーク内を安全とする境界型セキュリティから脱却し、世界中のコンピュータを結ぶ。
  • 境界型セキュリティの限界。LANの中でも信用しないという考え方

IPv6

  • IPアドレスの詐称の可能性がある

EVER/IP

  • Advanced Security
  • Autonomous Networking
  • Authenticated Connectivity
  • 公開鍵暗号。公開鍵のハッシュがIPアドレス
  • ゼロタッチプロビジョニング

自治体ネットワーク、三層分離の見直し

  • 自治体の3層構造
    • 個人番号利用事業系
    • LGWAN接続系
    • インターネット接続系
  • LGWAN系、インターネット接続系に、リモートワークシステムが接続するには。

さくらクラウドの実験サーバのアップグレード

学生実験で、Webプログラムのセキュリティ問題の対応をテーマに実験しているけど、Ubuntu 18系を20系にアップグレードを行った。基本的な実験だけなので、Apache+PHP程度なので、移行も手間取らないだろうと踏んでいたけど、sulinux でちょっと手間取った。

# systemctl enable apache2
# aptitude install update-manager
# aptitude update
# aptitude dist-upgrade
# do-release-upgrade -d

無事に、更新が終わって再起動をかけたら、ブートに失敗。ssh などが繋がらなくなる。

どうしようもなくなったので、さくらのクラウドのコンソールをみると、sssd 関連でエラーが出てブート途中で止まっている。
冷や汗をかきながら、Ubuntu ブート時のリカバリーモードの起動を試みて、ようやく成功。

起動時にESCを押すと、ブートメニューが表示される。インストール済みの kernel とそのリカバリーモードの一覧がでるので、リカバリーモードでログイン。”aptitude remove sssd-common” により一旦、sssd を削除(sulinux関連)すると、無事に起動したので、基本機能の確認をして、再び”aptitude install sssd-common”。

アップグレード作業中に、apache2 が disable されていたり、php の関連パッケージが入っていなかったので、インストール。

# systemctl enable apache2
# systemctl start apache2
# aptitude install php-mbstring php-sqlite3
# a2enmod php7.4

集合とリスト処理

リスト構造は、必要に応じてメモリを確保するデータ構造であり、データ件数に依存しないプログラム が記述できる。その応用として、集合処理を考えてみる。集合処理の記述には、2進数を使った方式リストを用いた方法が一般的である。以下にその処理について示す。

bit演算子

2進数を用いた集合処理を説明する前に、2進数を使った計算に必要なbit演算子について復習してみる。

bit演算子 計算の意味 関連知識
& bit AND 3 & 5
0011)2 & 0101)2= 0001)2
論理演算子
if ( a == 1 && b == 2 ) …
| bit OR 3 | 5
0011)2 | 0101)2= 0111)2
論理演算子
if ( a == 1 || b == 2 ) …
~ bit NOT ~5
~ 00..00,0101)2= 11..11,1010)2
論理否定演算子
if ( !a == 1 ) …
^ bit EXOR 3 ^ 5
0011)2 ^ 0101)2= 0110)2
<< bit 左シフト 3 << 2
0011)2 << 2 = 001100)2
x << y は x * 2y と同じ
>> bit 右シフト 12 >> 2
1100)2 >> 2 = 11)2
x >> y は x / 2y と同じ
#include <stdio.h>

int main() {
   // bit演算子と論理演算子
   printf( "%d¥n" , 12 &  5 ) ;  // 1100 & 0101 = 0100 よって 4が表示される
   printf( "%d¥n" , 12 && 0 ) ;  // 0が表示 論理演算子とbit演算子の違い
   printf( "%d¥n" , 12 |  5 ) ;  // 1100 | 0101 = 1101 よって 13が表示される
   printf( "%d¥n" , 12 || 0 ) ;  // 1が表示 
   // シフト演算子
   printf( "%d¥n" ,  3 << 2 ) ;  // 12が表示
   printf( "%d¥n" , 12 >> 2 ) ;  // 3が表示
   // おまけ
   printf( "%d¥n" , ~(unsigned)12 + 1 ) ;  // 2の補数(NOT 12 + 1) = -12
   return 0 ;
}

2進数を用いた集合計算

リストによる集合の前に、もっと簡単な集合処理を考える。

最も簡単な方法は、要素に含まれる=1 か 含まれない=0 を配列に覚える方法であろう。数字Nが集合に含まれる場合は、配列[N]に1を覚えるものとする。この方法で積集合などを記述した例を以下に示す。ただし、自分で考える練習として穴埋めを含むので注意。

しかし、上述のプログラムでは、要素に含まれる/含まれないという1bitの情報を、整数型で保存しているためメモリの無駄である。

データ件数の上限が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。

2進数を用いた集合計算

扱うデータ件数が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。

以下のプログラムは、0〜31の数字を2進数の各ビットに対応付けし、 ba = {1,2,3} , bb = {2,4,6} , bc= {4,6,9} を要素として持つ集合で、ba bb , bb bc , ba  bc の計算を行う例である。

// 符号なし整数を uint_t とする。
typedef unsigned int uint_t ;

// uint_tのbit数
#define UINT_BITS (sizeof( uint_t ) * 8)

// 集合の内容を表示
void bit_print( uint_t x ) {
   for( int i = 0 ; i < UINT_BITS ; i++ )
      if ( (x & (1 << i)) != 0 )
         printf( "%d " , i ) ;
   printf( "\n" ) ;
}
void main() {     // 98,7654,3210
   // ba = {1,2,3} = 00,0000,1110
   uint_t ba = (1<<1) | (1<<2) | (1<<3) ;
   // bb = {2,4,6} = 00,0101,0100
   uint_t bb = (1<<2) | (1<<4) | (1<<6) ;
   // bc = {4,6,9} = 10,0101,0000
   uint_t bc = (1<<4) | (1<<6) | (1<<9) ;

   // 集合積(bit AND)
   bit_print( ba & bb ) ; // ba ∩ bb = {2}                 
   bit_print( bb & bc ) ; // bb ∩ bc = {4,6}
   // 集合和(bit OR)
   bit_print( ba | bc ) ; // ba ∪ bc = {1,2,3,4,6,9}
}

有名なものとして、エラトステネスのふるいによる素数計算を2進数を用いて記述してみる。このアルゴリズムでは、各bitを整数に対応付けし、素数で無いと判断した2進数の各桁に1の目印をつけていく方式である。

uint_t prime = 0 ; // 初期値=すべての数は素数とする。

void filter() {
   // 倍数に非素数の目印をつける
   for( int i = 2 ; i < UINT_BITS ; i++ ) {
      if ( (prime & (1 << i)) == 0 ) {
         // iの倍数には、非素数の目印(1)をつける
         for( int j = 2*i ; j < UINT_BITS ; j += i )
            prime |= (1 << j) ;
      }
   }
   // 非素数の目印の無い値を出力
   for( int i = 2 ; i < UINT_BITS ; i++ ) {
      // 目印のついていない数は素数
      if ( (prime & (1 << i)) == 0 )
         printf( "%d\n" , i ) ;
   }
}

リスト処理による積集合

前述の方法は、リストに含まれる/含まれないを、2進数の0/1で表現する方式である。しかし、2進数であれば、unsigned int で 32要素、unsigned long long int で 64 要素が上限となってしまう。 (32bitコンピュータ,gccの場合)

しかし、リスト構造であれば、リストの要素として扱うことで、要素件数は自由に扱える。また、今までの授業で説明してきた cons() などを使って表現すれば、簡単なプログラムでリストの処理が記述できる。

// 先週までに説明してきたリスト構造と補助関数
struct List {
   int     data ;
   struct List* next ;
} ;
struct List* cons( int x , struct List* n ) {
   struct List* ans ;
   ans = (struct List*)malloc( sizeof( struct List ) ) ;
   if ( ans != NULL ) {
      ans->data = x ;
      ans->next = n ;
   }
   return ans ;
}
void print( struct List* p ) {
   for( ; p != NULL ; p = p->next ) {
      printf( "%d " , p->data ) ;
   }
   printf( "\n" ) ;
}
int find( struct List* p , int key ) {
   for( ; p != NULL ; p = p->next )
      if ( p->data == key )
         return 1 ;
   return 0 ;
}

例えば、積集合(a ∩ b)を求めるのであれば、リストa の各要素が、リストb の中に含まれるか find 関数でチェックし、 両方に含まれたものだけを、ans に加えていく…という考えでプログラムを作ると以下のようになる。

// 集合積の計算
struct List* set_prod( struct List* a , struct List* b ) {
   struct List* ans = NULL ;
   for( ; a != NULL ; a = a->next ) {
      // aの要素がbにも含まれていたら、ansに加える
      if ( find( b , a->data ) )
         ans = cons( a->data , ans ) ;
   }
   return ans ;
}
void main() {
   struct List* a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ;
   struct List* b = cons( 2, cons( 4, cons( 6, NULL ) ) ) ;
   struct List* c = cons( 4, cons( 6, cons( 9, NULL ) ) ) ;
   print( set_prod( a , b ) ) ;
   print( set_prod( b , c ) ) ;
}

例題として、和集合差集合などを考えてみよう。

リストの共有と削除の問題

リスト処理では、mallocを使うが、メモリリークをさせないためには、使用後のリストの廃棄は重要である。リストの全要素を捨てる処理であれば、以下のようになるであろう。

void list_free( struct List* p ) {
   while( p != NULL ) {
      struct List* d = p ;
      p = p->next ;
      free( d ) ; // 順序に注意
   }
}

一方、前説明の和集合(a ∪ b)のプログラムを以下のように作った場合、list_freeの処理は問題となる。

// 集合和
struct List* set_union( struct List*a, struct List*b ) {
   struct List* ans = b ;
   for( ; a != NULL ; a = a->next )
      if ( !find( b , a->data ) )
         ans = cons( a->data , ans ) ;
   return ans ;
}
void main() {
   struct List*a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ;
   struct List*b = cons( 2, cons( 3, cons( 4, NULL ) ) ) ;
   struct List*c = set_union( a , b ) ;
   // a,b,cを使った処理
   // 処理が終わったので、a,b,cを捨てる
   list_free( a ) ;
   list_free( b ) ;
   list_free( c ) ;
   // c = { 1 , (bのリスト) }
   // (b)の部分は先のlist_free(b)で解放済み
}

このような、リストb,リストcで共有されている部分があると、データの廃棄処理をどのように記述すべきなのか、問題となる。

これらの解決方法としては、(1) set_union() の最初で、ans=b となっている部分を別にコピーしておく、(2) 参照カウンタ法を用いる、(3) ガベージコレクタのある言語を用いる…などがある。(2),(3)は後期授業で改めて解説を行う。

// 同じ要素を含む、新しいリストを作る
struct List* copy( struct List*p ) {
   struct List*ans = NULL ;
   for( ; p != NULL ; p = p->next )
      ans = cons( p->data , ans ) ;
   return ans ;
}
struct List* set_union( struct List*a, struct List* b ) {
   struct List* ans = copy( b ) ;
   // この後は自分で考えよう。
}

理解確認

  • 2進数を用いた集合処理は、どのように行うか?
  • リスト構造を用いた集合処理は、どのように行うか?
  • 積集合(A ∩ B)、和集合(A ∪ B)、差集合(A – B) の処理を記述せよ。

差分とフィードバック制御

情報制御基礎の授業を通して、入力値を制御するため、コンピュータを使う場合の数値処理の基礎的な話として、信号の平滑化を説明してきたので、最後に差分について説明をする。また、実際には、入力値を制御に利用する一般的な構成のフィードバック制御について説明する。

変化の検出

例えば、以下のような若干のノイズが混ざった入力信号が与えられたとする。この波形で「大きな山が何ヶ所ありますか?」と聞かれたら、いくつと答えるべきであろうか?山の判断方法は色々あるが、4カ所という答えは、1つの見方であろう。では、この4カ所という判断はどうすればいいだろうか?

こういった山の数を数えるのであれば、一定値より高いか低いか…という判断方法もあるだろう。この絵であれば、15ステップ目、32ステップ目付近は、100を越えていることで、2つの山と判断できるだろう。

こういった予め決めておいた値より「上か?/下か?」で判断するときの基準値は、しきい値(閾値:threshold)と呼ぶ。

しかし、この閾値では、40ステップ目から50ステップ目も100を越えており、以下のようなプログラムを書いたら、40ステップ目~50ステップ目すべてをカウントしてしまう。

#define THRESHOLD 100
int x[ 100 ] = {
   // 波形のデータが入っているとする。
} ;

int count = 0 ;
for( int i = 0 ; i < 100 ; i++ ) {
   if ( x[i] >= THRESHOLD )
      count++ ;
}

また、65ステップ目の小さな山も1個とカウントしてしまう。

この問題を避けるために、閾値を130にすると、今度は最初の2つの山をカウントできない。どうすれば、山の数をうまくカウントできるのだろうか?

差分を求める

前述のような問題で山の数を数える方法を考えていたが、数学で山を見つける時には、何をするだろうか?

数学なら、山や谷の頂点を求めるのならば、微分して変化量が0となる場所を求めることで、極大値・極小値を求めるだろう。そこで、山を見つけるために入力値の変化量を求めてみよう。

表計算ソフトで差分を計算するのであれば、セルに図のような式を入力すればいいであろう。このようなデータ点で前の値との差差分と呼ぶ。数学であれば、微分に相当する。

このグラフを見ると、波形が大きく増加する部分で、差分が大きな正の値となる。さらに波形が大きく減少する部分で差分が負の大きな値となる。特にこのデータの場合、山と判断したい部分は差分が20以上の値の部分と定義することも考えられる。

#define TH_DIFF 20
int x[ 100 ] = {
   // 波形のデータが入っているとする。
} ;

int count = 0 ;
for( int i = 0 ; i < 100 ; i++ ) {
   if ( x[i] - x[i-1] >= TH_DIFF
        && x[i+1] - x[i] <= -TH_DIFF )
      count++ ;
}

しかし、このプログラムでは、山の数をうまくカウントしてくれない。うまく、山の数を数えるためには、差分の値を山と判断するための閾値(この場合は20)を調整することになるだろう。

移動平均との差

前回の講義で示したデータの例で、移動平均を取ると分かる事例ということで、船につけられた加速度センサーで、長い周期の波による船の揺れと、短い周期のエンジンによる振動があったとき、エンジンの振動を移動平均で取り除くことができるという事例を示した。

これを逆手にとれば、元の信号と移動平均の差を取れば、エンジンの振動だけを取り出すことも可能となる。以下は、前の事例で、前後5stepの移動平均(水色線)と元信号(青線)の差をとったものが緑線となっている。このような方法をとれば、元信号の短い周期の変動を抽出することができる。

制御工学の概要

以下に、制御工学ではどのようなことを行うのか、概要を述べる。
ここで紹介する制御理論は、古典制御理論と呼ばれる。

制御工学では、入力値と、何らかの処理を施し出力値が得られるシステムで、どのように制御するかを考える。

例えば、電気ポットの温度制御をする場合、設定温度の値を入力値とし、何らかの処理を行い、出力となるヒーターの電流を制御し、最終的には温度が測定される。ヒーターは、設定温度と温度計の値の差に応じて電流量を変化させる。このように一般的な制御では、最終的な温度が入力に戻っている。このように目標値に近づけるために、目標値との差に応じて制御することをフィードバック制御という。


制御の仕方には様々な方法があるが、 がとある時間で0からYに変化した場合を考える。入力と出力で制御された波形の例を示す。

この波形では、黒のように入力値が変化した場合、それに追いつこうと出力が変化する。(1)理想的には、速やかに追いつく赤のように変化したい。しかし、(2)慎重に制御をする人なら、変化への制動が大きい過制動(青点線)となり、目標値に追いつくまでに時間がかかる。(3)一方、すこしでもずれたら直そうとする人なら、時間的には速い反応ができるかもしれないが、目標値を追い越したり、増えすぎ分を減らしすぎたりして脈動する過制御(赤点線)となるかもしれない。

PID制御

目標値、出力、ずれ(偏差)、制御量とした時、基本的なフィードバック制御として偏差の使い方によってP動作,I動作,D動作がある。参考 Wikipedia PID制御

比例制御(P制御)

偏差に比例した制御を行う方式(を比例ゲインと呼ぶ)

今年のコロナ騒動を例にとるならば、比例制御は、今日の感染者数y(t)と目標としたい感染者数x(t)の差に応じて、対策の強さu(t)を決めるようなもの。

積分制御(I制御)

偏差のある状態が長い時間続く場合、入力値の変化を大きくすることで目標値に近づけるための制御。(は積分ゲイン)

積分制御は、目標の感染者数x(t)を感染者数y(t)が超えた累積患者数に応じて、対策を決めるようなもの。
移動平均は、一定範囲の値の和(を範囲のデータ数で割ったもの)であり、積分制御は移動平均の値に応じて制御するとみなすこともできる。

微分制御(D制御)

急激な出力値の変化が起こった場合、その変化の大きさに応じて妨げようとする制御。(は微分ゲイン)

微分制御は、目標数と感染者数の差が、前日よりどのぐらい増えたか(患者の増減の量:変化量)に応じて、対策を決めるようなもの。

PID制御

上記のI制御やD制御だけでは、安定させることが難しいので、これらを組み合わせたPID制御を行う。

この中で、の値は、制御が最も安定するように調整を行うものであり、数値シミュレーションや、ステップ応答を与えた時の時間的変化を測定して調整を行う。

スタックと待ち行列

前回の授業では、リストの先頭にデータを挿入する処理と、末尾に追加する処理について説明したが、この応用について説明する。

計算処理中に一時的なデータの保存として、stackとqueueがよく利用される。それを配列を使って記述したり、任意の大きさにできるリストを用いて記述することを示す。

スタック

配列を用いたスタック

一時的な値の記憶によく利用されるスタック(stack)は、データの覚え方の特徴からLIFO( Last In First out )とも呼ばれる。配列を使って記述すると以下のようになるであろう。

#define STACK_SIZE 32
int stack[ STACK_SIZE ] ;
int sp = 0 ;

void push( int x ) { // データをスタックの一番上に積む
    stack[ sp++ ] = x ;
}
int pop() { // スタックの一番うえのデータを取り出す
    return stack[ --sp ] ;
}
void main() {
    push( 1 ) ; push( 2 ) ; push( 3 ) ;
    printf( "%d\n" , pop() ) ; // 3
    printf( "%d\n" , pop() ) ; // 2
    printf( "%d\n" , pop() ) ; // 1
}

++,–の前置型と後置型の違い

// 後置インクリメント演算子
int i = 100 ;
printf( "%d" , i++ ) ;
// これは、
printf( "%d" , i ) ;
i++ ;
// と同じ。100が表示された後、101になる。

// 前置インクリメント演算子
int i = 100 ;
printf( "%d" , ++i ) ;
//   これは、
i++ ;
printf( "%d" , i ) ;
// と同じ。101になった後、101を表示。

リスト構造を用いたスタック

しかし、この中にSTACK_SIZE以上のデータは貯えられない。同じ処理をリストを使って記述すれば、配列サイズの上限を気にすることなく使うことができるだろう。では、リスト構造を使ってスタックの処理を記述してみる。

struct List* stack = NULL ;

void push( int x ) { // リスト先頭に挿入
    stack = cons( x , stack ) ;
}
int pop() { // リスト先頭を取り出す
    int ans = stack->data ;
    struct List* d = stack ;
    stack = stack->next ;
    free( d ) ;
    return ans ;
}

キュー(QUEUE)

2つの処理の間でデータを受け渡す際に、その間に入って一時的にデータを蓄えるためには、待ち行列(キュー:queue)がよく利用される。 データの覚え方の特徴からFIFO(First In First Out)とも呼ばれる。

配列を用いたQUEUE / リングバッファ

配列にデータを入れる場所(wp)と取り出す場所のポインタ(rp)を使って蓄えれば良いが、配列サイズを超えることができないので、データを取り出したあとの場所を循環して用いるリングバッファは以下のようなコードで示される。

#define QUEUE_SIZE 32
int queue[ QUEUE_SIZE ] ;
int wp = 0 ; // write pointer(書き込み用)
int rp = 0 ; // read  pointer(読み出し用)

void put( int x ) { // 書き込んで後ろ(次)に移動
    queue[ wp++ ] = x ;
    if ( wp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        wp = 0 ;
}
int get() { // 読み出して後ろ(次)に移動
    int ans = queue[ rp++ ] ;
    if ( rp >= QUEUE_SIZE )  // 末尾なら先頭に戻る
        rp = 0 ;
    return ans ;
}
void main() {
    put( 1 ) ; put( 2 ) ; put( 3 ) ;
    printf( "%d\n" , get() ) ; // 1
    printf( "%d\n" , get() ) ; // 2
    printf( "%d\n" , get() ) ; // 3
}

このようなデータ構造も、get() の実行が滞るようであれば、wp が rp に循環して追いついてしまう。このため、上記コードはまだエラー対策としては不十分である。どのようにすべきか?

リスト構造を用いたQUEUE

前述のリングバッファもget()しないまま、配列上限を越えてput()を続けることはできない。

この配列サイズの上限問題を解決したいのであれば、リスト構造を使って解決することもできる。この場合のプログラムは、以下のようになるだろう。

struct List* queue = NULL ;
struct List** tail = &queue ;

void put( int x ) { // リスト末尾に追加
    *tail = cons( x , NULL ) ;
    tail = &( (*tail)->next ) ;
}
int get() { // リスト先頭から取り出す
    int ans = queue->data ;
    struct List* d = queue ;
    queue = queue->next ;
    free( d ) ;
    return ans ;
}

ただし、上記のプログラムは、データ格納後にget()で全データを取り出してしまうと、tail ポインタが正しい位置になっていないため、おかしな状態になってしまう。
また、このプログラムでは、rp,wp の2つのポインタで管理することになるが、 2重管理を防ぐために、リストの先頭と末尾を1つのセルで管理する循環リストが使われることが多い。

理解確認

  • 配列を用いたスタック・待ち行列は、どのような処理か?図などを用いて説明せよ。
  • リスト構造を用いたスタック・待ち行列について、図などを用いて説明せよ。
  • スタックや待ち行列を、配列でなくリスト構造を用いることで、どういう利点があるか?欠点があるか説明せよ。

システム

最新の投稿(電子情報)

アーカイブ

カテゴリー