集合とリスト処理
リスト構造は、必要に応じてメモリを確保するデータ構造であり、データ件数に依存しないプログラム が記述できる。その応用として、集合処理を考えてみる。集合処理の記述には、2進数を使った方式やリストを用いた方法が一般的である。以下にその処理について示す。
bit演算子
2進数を用いた集合処理を説明する前に、2進数を使った計算に必要なbit演算子について復習してみる。
bit演算子は、その数値を2進数表記とした時の各ビットをそれぞれAND,OR,EXOR,NOTなどの計算を行う。
bit演算子 | 計算の意味 | 関連知識 |
---|---|---|
& bit AND | 3 & 5 0011)2 & 0101)2= 0001)2 |
論理積演算子 if ( a == 1 && b == 2 ) … |
| bit OR | 3 | 5 0011)2 | 0101)2= 0111)2 |
論理和演算子 if ( a == 1 || b == 2 ) … |
~ bit NOT | ~5 ~ 00..00,0101)2= 11..11,1010)2 |
論理否定演算子 if ( !a == 1 ) … |
^ bit EXOR | 3 ^ 5 0011)2 ^ 0101)2= 0110)2 |
|
<< bit 左シフト | 3 << 2 0011)2 << 2 = 001100)2 |
x << y は と同じ |
>> bit 右シフト | 12 >> 2 1100)2 >> 2 = 11)2 |
x >> y は と同じ |
#include <stdio.h> int main() { // bit演算子と論理演算子 printf( "%d¥n" , 12 & 5 ) ; // 1100 & 0101 = 0100 よって 4が表示される printf( "%d¥n" , 12 && 0 ) ; // 0が表示 論理演算子とbit演算子の違い printf( "%d¥n" , 12 | 5 ) ; // 1100 | 0101 = 1101 よって 13が表示される printf( "%d¥n" , 12 || 0 ) ; // 1が表示 // シフト演算子 printf( "%d¥n" , 3 << 2 ) ; // 12が表示 printf( "%d¥n" , 12 >> 2 ) ; // 3が表示 // おまけ printf( "%d¥n" , ~(unsigned)12 + 1 ) ; // 2の補数(NOT 12 + 1) = -12 return 0 ; }
2進数とビットフィールド
例えば、誕生日の年月日の情報を扱う際、20230726で、2023年7月26日を表現することも多い。
しかしこの方法は、この年月日の情報から年(4桁)、月(2桁)、日(2桁)を取り出す処理では、乗算除算が必要となる。通常のCPUであれば、簡単な乗除算は速度的にも問題はないが、組込み系では処理速度の低下も懸念される。
int ymd = 20230726 ; int y , m , d ; y = ymd / 10000 ; m = ymd / 100 % 100 ; d = ymd % 100 ; y = 1965 ; m = 2 ; d = 7 ; ymd = y * 10000 + m * 100 + d ;
こういった処理を扱う際には、2進数を使って扱う方法がある。
例えば、年は 0..2047 の範囲と考えれば 11 bit で表現でき、月は1..12の範囲であり 4bit で表現可能であり、日は1..31 で 5bit で表現できる。これを踏まえて、年月日を 11+4+5 = 20bit で表すなら、以下のプログラムのように書ける。
int ymd = (2023 << 9) + (7 << 5) + 26 ; int y , m , d ; y = ymd >> 9 ; m = (ymd >> 5) & 0xF ; d = (ymd & 0x1F) ; y = 1965 ; m = 2 ; d = 7 ; ymd = (y << 9) + (m << 5) + d ;
しかし、上記のプログラムでは、いちいち2進数bit演算をイメージする必要があって、プログラムが分かりづらい。こういった際にに使うのが ビットフィールドである。
struct YMD { unsigned int year : 11 ; // ビットフィールドでは、 unsigned int month : 4 ; // 構造体の要素を何ビットで保存するのか unsigned int day : 5 ; // 指定することができる。 } ; struct YMD ymd = { 2023 , 7 , 26 } ; int y , m , d ; y = ymd.year ; m = ymd.month ; d = ymd.day ; ymd.year = 1965 ; ymd.month = 2 ; ymd.day = 7 ;
2進数を用いた集合計算
リストによる集合の前に、もっと簡単な集合処理を考える。
最も簡単な方法は、要素に含まれる=1 か 含まれない=0 を配列に覚える方法であろう。数字Nが集合に含まれる場合は、配列[N]に1を覚えるものとする。この方法で積集合などを記述した例を以下に示す。ただし、自分で考える練習として穴埋めを含むので注意。
しかし、上述のプログラムでは、要素に含まれる/含まれないという1bitの情報を、整数型で保存しているためメモリの無駄である。
データ件数の上限が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。
2進数を用いた集合計算
扱うデータ件数が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。
以下のプログラムは、0〜31の数字を2進数の各ビットに対応付けし、 ba = {1,2,3} , bb = {2,4,6} , bc= {4,6,9} を要素として持つ集合で、ba ∩ bb , bb ∩ bc , ba ∪ bc の計算を行う例である。
// 符号なし整数を uint_t とする。 typedef unsigned int uint_t ; // uint_tのbit数 #define UINT_BITS (sizeof( uint_t ) * 8) // 集合の内容を表示 void bit_print( uint_t x ) { for( int i = 0 ; i < UINT_BITS ; i++ ) if ( (x & (1 << i)) != 0 ) printf( "%d " , i ) ; printf( "\n" ) ; } void main() { // 98,7654,3210 // ba = {1,2,3} = 00,0000,1110 uint_t ba = (1<<1) | (1<<2) | (1<<3) ; // bb = {2,4,6} = 00,0101,0100 uint_t bb = (1<<2) | (1<<4) | (1<<6) ; // bc = {4,6,9} = 10,0101,0000 uint_t bc = (1<<4) | (1<<6) | (1<<9) ; // 集合積(bit AND) bit_print( ba & bb ) ; // ba ∩ bb = {2} bit_print( bb & bc ) ; // bb ∩ bc = {4,6} // 集合和(bit OR) bit_print( ba | bc ) ; // ba ∪ bc = {1,2,3,4,6,9} }
有名なものとして、エラトステネスのふるいによる素数計算を2進数を用いて記述してみる。このアルゴリズムでは、各bitを整数に対応付けし、素数で無いと判断した2進数の各桁に1の目印をつけていく方式である。
uint_t prime = 0 ; // 初期値=すべての数は素数とする。 void filter() { // 倍数に非素数の目印をつける for( int i = 2 ; i < UINT_BITS ; i++ ) { if ( (prime & (1 << i)) == 0 ) { // iの倍数には、非素数の目印(1)をつける for( int j = 2*i ; j < UINT_BITS ; j += i ) prime |= (1 << j) ; } } // 非素数の目印の無い値を出力 for( int i = 2 ; i < UINT_BITS ; i++ ) { // 目印のついていない数は素数 if ( (prime & (1 << i)) == 0 ) printf( "%d\n" , i ) ; } }
リスト処理による積集合
前述の方法は、リストに含まれる/含まれないを、2進数の0/1で表現する方式である。しかし、2進数であれば、unsigned int で 32要素、unsigned long int で 64 要素が上限となってしまう。 (64bitコンピュータ,gccの場合)
#include <inttypes.h> を使えば、unsigned int = uint32_t , unsigned long int = uint64_t などが使える。
しかし、リスト構造であれば、リストの要素として扱うことで、要素件数は自由に扱える。また、今までの授業で説明してきた cons() などを使って表現すれば、簡単なプログラムでリストの処理が記述できる。
// 先週までに説明してきたリスト構造と補助関数 struct List { int data ; struct List* next ; } ; struct List* cons( int x , struct List* n ) { struct List* ans ; ans = (struct List*)malloc( sizeof( struct List ) ) ; if ( ans != NULL ) { ans->data = x ; ans->next = n ; } return ans ; } void print( struct List* p ) { for( ; p != NULL ; p = p->next ) { printf( "%d " , p->data ) ; } printf( "\n" ) ; } int find( struct List* p , int key ) { for( ; p != NULL ; p = p->next ) if ( p->data == key ) return 1 ; return 0 ; }
例えば、積集合(a ∩ b)を求めるのであれば、リストa の各要素が、リストb の中に含まれるか find 関数でチェックし、 両方に含まれたものだけを、ans に加えていく…という考えでプログラムを作ると以下のようになる。
// 集合積の計算 struct List* set_prod( struct List* a , struct List* b ) { struct List* ans = NULL ; for( ; a != NULL ; a = a->next ) { // aの要素がbにも含まれていたら、ansに加える if ( find( b , a->data ) ) ans = cons( a->data , ans ) ; } return ans ; } void main() { struct List* a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List* b = cons( 2, cons( 4, cons( 6, NULL ) ) ) ; struct List* c = cons( 4, cons( 6, cons( 9, NULL ) ) ) ; print( set_prod( a , b ) ) ; print( set_prod( b , c ) ) ; }
例題として、和集合、差集合などを考えてみよう。
リストの共有と削除の問題
リスト処理では、mallocを使うが、メモリリークをさせないためには、使用後のリストの廃棄は重要である。リストの全要素を捨てる処理であれば、以下のようになるであろう。
void list_free( struct List* p ) { while( p != NULL ) { struct List* d = p ; p = p->next ; free( d ) ; // 順序に注意 } }
一方、前説明の和集合(a ∪ b)のプログラムを以下のように作った場合、list_freeの処理は問題となる。
// 集合和 struct List* set_union( struct List*a, struct List*b ) { struct List* ans = b ; for( ; a != NULL ; a = a->next ) if ( !find( b , a->data ) ) ans = cons( a->data , ans ) ; return ans ; } void main() { struct List*a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List*b = cons( 2, cons( 3, cons( 4, NULL ) ) ) ; struct List*c = set_union( a , b ) ; // a,b,cを使った処理 // 処理が終わったので、a,b,cを捨てる list_free( a ) ; list_free( b ) ; list_free( c ) ; // c = { 1 , (bのリスト) } // (b)の部分は先のlist_free(b)で解放済み }
このような、リストb,リストcで共有されている部分があると、データの廃棄処理をどのように記述すべきなのか、問題となる。
これらの解決方法としては、(1) set_union() の最初で、ans=b となっている部分を別にコピーしておく、(2) 参照カウンタ法を用いる、(3) ガベージコレクタのある言語を用いる…などがある。(2),(3)は後期授業で改めて解説を行う。
// 同じ要素を含む、新しいリストを作る struct List* copy( struct List*p ) { struct List*ans = NULL ; for( ; p != NULL ; p = p->next ) ans = cons( p->data , ans ) ; return ans ; } struct List* set_union( struct List*a, struct List* b ) { struct List* ans = copy( b ) ; // この後は自分で考えよう。 }
理解確認
- 2進数を用いた集合処理は、どのように行うか?
- リスト構造を用いた集合処理は、どのように行うか?
- 積集合(A ∩ B)、和集合(A ∪ B)、差集合(A – B) の処理を記述せよ。