ホーム » 2023 » 1月 » 23

日別アーカイブ: 2023年1月23日

2023年1月
1234567
891011121314
15161718192021
22232425262728
293031  

検索・リンク

リモート接続と暗号化

最初に、前回講義が雪のために休校となり、その間の理解度確認で体験してもらった問題の解説の後、リモート接続と暗号化について説明を行う。

リモート接続

サーバなどの管理をしていると、インターネットの先にあるコンピュータを操作したい場合が多い。こういった場合には、リモート接続機能を用いる。

リモート接続による相手側のコンピュータを操作する場合、相手側のコンピュータには リモート接続 用のサーバプログラムを起動しておく。こういったリモート接続を利用するのは、”unix” の利用者が多いが、”unix” では、サーバ のプログラムは、一般的にデーモン(daemon/守護神)と呼ばれる。[daemonとdemonの違い]

telnet と rlogin

telnet は、最も基本的なリモート接続の方法であり、TCP の 23 番ポートを使う。telnetのサーバ(telnetd – telnet daemon)は、送られてくるタイプされた文字を unix の shell (キーボードでの命令を実行するプログラム) に渡し、shell の実行結果の文字を接続元に送り返す。

telnet のクライアントの基本的動作は、タイプされた文字を送って、受信した文字データを表示するだけなので、通信の動作の確認にもよく使われる。

例えば、Webサーバは、80番ポートに”GET /ページの場所”を送ると、HTMLデータが受信できる。この手順を telnet で行う場合は、以下の様に行う。

rlogin は、TCP の 513 番ポートを使うリモート接続用のソフトで、サーバで rlogind を起動しておく。unix で rlogin クライアントを使うと、リモート側で命令を実行したりファイルをコピーすることができる

こういったリモート接続ができると、ネットワークの向こう側のコンピュータを自由に操作できる一方で、login のパスワードが破られるとコンピュータを悪用されたり情報を盗まれる可能性がある。
特に、telnet , rlogin では、通信の内容が暗号化されないため、パケット盗聴(後述)されると、サーバを悪用されてしまう。このため telnet や rlogin による遠隔処理は、使うべきではない

どうしても使うのであれば、ルータや firewall で、ポート番号 23 , 513 などは、遮断し接続するネットワークを限定するのが一般的である。

ssh(secure shell)

暗号化されない rlogin の通信を暗号化により安全に実行できるようにしたものが、ssh (secure shell) である。
ssh は、通常では TCP の 22 番ポートを使う。しかし、暗号化されていたとしてもパスワード破りなどの危険性があるため、ポート番号を変更したり、特定のコンピュータに対してのみ接続許可を与え、安全対策を行う。

リモートデスクトップ

Windows では、コンピュータの操作では、マウス操作が中心(GUI: Graphical User Interface)となる。これに比べ、telnet,rlogin,ssh などの方法では、キーボードによる操作が中心(CUI: Character User Interface)であり、初心者には難しい。マウス操作などが必要であればリモートデスクトップ(remote desktop)が用いられる。

remote desktop では、サーバのディスプレイ画面の情報をクライアントに送り、クライアントの操作(キーボード入力やマウス操作)がサーバに送られ、サーバのコンピュータを自由に操作ができる。

sshやリモートデスクトップは、遠隔地のコンピュータを自由に操作できることから、様々なコンピュータを管理している場合、広く使われている。しかしながら、クラッキングなどの悪用の危険があるため、sshサーバ、リモートデスクトップサーバなどのソフトは、通常利用者は起動しないこと

クラッキングなどを行う場合、ウィルスを使ってリモート接続のためのソフトを動かされると、相手のコンピュータを自由に使える。このような、本来の使い方ではない侵入経路は、バックドアなどと呼ばれる。

暗号化

Ethernet では1本の通信線を共有したり、WiFiのような無線通信では、通信データの盗聴が簡単にできてしまう。クラッカーは、通信データの中から”login, password” といった文字を検索し、その近辺の文字を探すことでパスワードを盗み出す。

このようなことを防ぐために通信データの暗号化は重要な方法である。

暗号化アルゴリズム

暗号化の最も原始的な方法が、置換式 と呼ばれる方法で、特定の文字を別な文字に変更する。rot13は、A→N,B→Oに置き換える暗号。コナン・ドイル原作のシャーロック・ホームズに出てくる踊る人形などもこれに相当する。これらの方法では、アルファベットの文字の出現頻度から元の文を想像することで解読されてしまう。

エニグマ(Enigma)は、第2次世界大戦でナチス・ドイツが用いたロータ式暗号機であり、置換式の解読方法が不可能であった。しかし、イギリスのアラン・チューリングが電気式の解読器(ボンブ)を開発することで暗号解読が可能となった。この解読器が現在のコンピュータの原型となっている。

チューリングによる暗号解読は、映画「イミテーションゲーム」を参照。

最近では、様々な暗号化アルゴリズムが開発されており、古くは “DES, AES“といったアルゴリズムが使われていたが、コンピュータの性能の向上と共に、解読に必要な時間が短くなったことから、RSA といった新しい暗号化方式が考えられ、さらに暗号化の鍵を長くすることで解読に要する時間を長くするようになっている。

パスワード解読方法

ログインなどで使われるパスワードは、どのように破られるのだろうか?

  • ブルートフォース攻撃:単純に全ての文字を試す方式。文字の組み合わせ問題なので、パスワード文字列長をNとした場合、数字だけ(10N)とか英字だけ(26N)といった組み合わせでは、短時間に解読されてしまう。数字,大文字,小文字,記号などを交えたパスワードが理想。
  • 英単語辞書を用いた辞書攻撃:パスワードが長い場合、文字列の全ての組み合わせを試すには長い時間が必要となる。しかし、パスワードはユーザが記憶して使うことから覚えやすい単語が使われる。このため英単語辞書の文字を組み合わせることで、解読時間を短くできる場合がある。
  • 漏えいパスワードによる辞書攻撃:サーバへのリモート接続などができてしまった場合、パスワード情報が盗まれる場合がある。この時、別なサイトに同じパスワードを使っていると、その漏えいしたパスワードで別のサイトも接続ができてしまう。これらのことから、同じパスワードを使いまわすことは避けるべきである。
  • ソーシャル攻撃:パスワードには、簡単に覚えられるように自宅の電話番号、誕生日、家族の名前といったものを使う人が多い。このため、SNS で相手に友達登録をしてもうことで、こういった情報を手に入れ、パスワードを破る方法。最近の有名人の個人情報漏洩はこの手の攻撃が多い。

    ソーシャル攻撃は、”元クラッカー” ケビン・ミトニックが有名

攻撃が難しい暗号化へ

先に述べたような、login に使うパスワードなどは、ブルートフォース攻撃をうけると解読は時間の問題となる。これらの対策として毎回違う鍵(パスワード)を使えばいい。

    • 暗号表:置換式で読み取られるのを防ぐために、置換する文字の表を沢山作っておき、別の方法でその度毎に置換表を変更する
  • ワンタイムパスワード:使い捨てのパスワードをあらかじめ沢山作っておき、接続の度に次のパスワードを用いる方式。あるいは、時間から特殊な計算方法で生成されるパスワード。時間と共に変化するのでその度毎に違うパスワードとなる。毎回違うパスワードを入力するため、パスワード表を常に持ち歩いたり、入力が面倒なので数字だけを使うことが多く、この方法だけでは使いにくい。

理解度確認

  • ファイアウォールの仕組みを説明せよ。

NoSQLと Google firestore

データベースシステムとして、最近は NoSQL (Not Only SQL) が注目されている。この中で、広く使われている物として、Google Firestore などが有名である。教科書以外の最近のデータベースの動向ということで、最後に NoSQL の説明を行う。

リレーショナルデータベースシステムの問題

リレーショナルデータベースのシステムでは、大量の問い合わせに対応する場合、データのマスターとなるプライマリサーバに、そのデータの複製を持つ複数のセカンダリサーバを接続させる方式がとられる。しかしながら、この方式ではセカンダリサーバへのデータ更新を速やかにプライマリサーバに反映させる、さらにその結果が他のセカンダリサーバに反映させる必要があることから、大量のデータに大量の問い合わせがあるようなシステムでは、これらのデータ同期の性能が求められる。しかも、プライマリサーバが故障した場合の復旧なども考えると、こういったプライマリ・セカンダリ・サーバ構成での運用・管理は大変である。

NoSQLの利点

NoSQLのデータベースでは、すべてのデータを複数のサーバ(別のデバイス,ネットワーク)に冗長化したうえで分散して保存する。この際に、どのサーバがプライマリサーバといった概念はない。もし1つのサーバが故障したとしても、分散して保存されたデータから元のデータを自動的に修復できるような構造となっている。

データの分散保存であれば、ハードディスクの RAID システムなども関連知識となるであろう。

  • RAID0 – ストライピング(データを別デバイスに分散保存し、並行読み出しで高速化)
  • RAID1 – ミラーリング(データを複数デバイスに同じものを書き込んで、データ故障耐性を実現)
  • RAID5 – データを複数デバイスに分散保存する際に、データ誤り訂正のデータも分散保存し、高速化と故障耐性を実現
  • RAID6 – データ誤り補正のデータを複数もたせて、分散保存

リレーショナルデータベースで大量のユーザからアクセスされる場合、データが安全に取り扱うことができたり、システムに障害が発生した時の対応や、システムのスケーラビリティ(利用状況に応じて処理するプロセッサなどを増やしたり減らしたりする機能)が重要となる。NoSQLのシステムでは、中心となるプライマリサーバを作るのではなく、データを複数のシステムに分散して保存し、障害が発生しても、分散したデータから自動的にデータを修復できるような構成とする。

NoSQLのシステムでは、データ格納形式から、キーバリューストア型、カラムストア型、ドキュメントデータベース、グラフデータベースに分類される。最も代表的なものは、保存するデータ(Value)に対し検索するためのキー(Key)だけの基本的なデータ検索だけを提供する キーバリューストア(Key-Value store)である。こういった構成ではSQLとは違い、複数のテーブルをまたがった検索などができない(サブコレクションなどを使えば代用可能)。

Google の Firestore

NoSQLのデータベースを構築したのは、Google が先駆けであった。現在、このGoogle の NoSQL のシステムは、Firestore として利用されている。(データベースはFireBase)

Firestore は、ドキュメントモデルデータベースの一種であり、すべてのデータはドキュメントとコレクションに保存される。ドキュメントは、データベースでのレコードに相当するが、属性名とそれに対応したデータの JSON オブジェクトである。コレクションは、キーにより対応するドキュメントを取り出せるデータ群である。ドキュメントの中に、サブコレクションを保存することもできる。

システム

最新の投稿(電子情報)

アーカイブ

カテゴリー