ホーム » 「構文解析」タグがついた投稿
タグアーカイブ: 構文解析
演算子と言語処理系
前回追加で説明した逆ポーランド記法などの説明を再掲したうえで、構文解析といった言語処理系の話を解説する。
逆ポーランド記法
一般的に 1*2 + 3*4 と記載すると、数学的には演算子の優先順位を考慮して、(1*2)+(3*4) のように乗算を先に行う。このような優先順位を表現する時に、()を使わない方法として、逆ポーランド記法がある。
演算子の書き方には、前置記法、中置記法、後置記法があり、後置記法は、「2と3を掛ける、それに1を加える」と捉えると、日本語の処理と似ている。
中置記法 1+2*3 前置記法 +,1,*,2,3 後置記法 1,2,3,*,+ # 1と「2と3をかけた値」をたす。
後置記法は、一般的に逆ポーランド記法(Reverse Polish Notation)とも呼ばれ、式を機械語の命令に置き換える際に役立つ。
演算子の右結合・左結合
例えば、”1/2*3″という式が与えられたとする。この結果は、1/6だろうか?3/2だろうか?
一般的な数学では、優先順位が同じ演算子が並んだ場合、左側から計算を行う。つまり”1/2*3″は、”(1/2)*3″を意味する。こういった左側の優先順位が高い演算子は左結合の演算子という。
ただしC言語では、”a = b = c = 0″ と書くと、”a = (b = (c = 0))” として扱われる。こういった代入演算子は、 右結合の演算子である。
理解度確認
以下の式を指定された書き方で表現せよ。
逆ポーランド記法 1,2,*,3,4,*,+ を中置記法で表現せよ。 中置記法 (1+2)*3-4*5 を逆ポーランド記法で表現せよ。
以前の情報処理技術者試験では、スタックの概念の理解の例題として、逆ポーランド記法への変換アルゴリズムのプログラム作成が出題されることが多かったが、最近は出題されることはなくなってきた。
逆ポーランド記法の式の実行
この逆ポーランド記法で書かれた式から結果を求めるプログラムは以下のように記述できる。このプログラムでは式を簡単にするため、数値は1桁の数字のみとする。
// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '\0' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }
逆ポーランド記法の式の実行は、上記のようにスタックを用いると簡単にできる。このようなスタックと簡単な命令で複雑な処理を行う方法はスタックマシンと呼ばれる。Java のバイトコードインタプリタもこのようなスタックマシンである。
Cプログラママニア向けの考察
上記のプログラムでは、int r=pop();…push(l+r); で記載しているが、
push( pop() + pop() ) ;とは移植性を考慮して書かなかった。理由を述べよ。
最初の関数電卓
初期の関数電卓では複雑な数式を計算する際に、演算子の優先順位を扱うのが困難であった。このため、HP社の関数電卓では、式の入力が RPN を用いていた。(HP-10Cシリーズ)
コンパイラと言語処理系
2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:通訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:翻訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
最初のC++の実装(Cfront)では、C++をトランスレータにかけてC言語を生成し、C言語のコンパイラで動かしていた。
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ
- ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
- エミュレーター
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
近々の例であれば、AppleのARMベースM1チップで intel CPU の動きを真似て動作させる Rosetta2 がトピック。パソコンで古いファミコンのソフトを動かすといった技術もエミュレータ。- 同じCPUで異なるOSを動かす場合は、CPU仮想化。
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
に分けられる。
C言語で機械語が生成されるまで
C言語のプログラムから、機械語の命令が生成されるまでは、以下のような処理が行われる。
一般的にコンパイラの処理というと、ソースコードから機械語を生成するまでの処理を指すが、C言語ではプリプロセッサ処理を含んだり、コンパイラの処理(ソースコードからオブジェクトファイル生成まで)のほかにリンク処理を含んで使われることも多い。
foo.c C言語のソース ↓ プリプロセッサ処理 cpp foo.c(#行の無いC言語のソース) ↓ コンパイラ gcc foo.obj(オブジェクトファイル/中間コード) unix系では foo.o ↓ (+) ← ライブラリ(scanf,printfなどの組み込み関数などをまとめたもの) ↓ リンカ(リンケージエディタ) ld foo.exe
コンパイラの処理
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(token)に分解 - 構文解析(syntax analysys)
tokenの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コード(オブジェクトファイル)として出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。
通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
字句解析でトークンを表現するために、規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法(構文)を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) <表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) <加算式> ::= <乗算式> '+' <乗算式> 【要注意】わざと間違っている部分あり | <乗算式> '-' <乗算式> | <乗算式> ; <乗算式> ::= <数字> '*' <乗算式> | <数字> '/' <乗算式> | <数字> ; <数字> ::= [0-9]+ ;
上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。
- ソースプログラムがコンパイラにより機械語が生成されるまでの処理について説明せよ。
意思決定木と構文解析
前回までの授業で2分探索木の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木と構文木を紹介する。
意思決定木
意思決定木の説明ということで、yes/noクイズの例を示しながら、2分木になっていることを 説明しプログラムを紹介。
((意思決定木の例:うちの子供が発熱した時)) 38.5℃以上の発熱がある? no/ \yes 元気がある? むねがひいひい? yes/ \no no/ \yes 様子をみる 氷枕で病院 解熱剤で病院 速攻で病院
このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。これは2分木と同じであり、このような処理は以下のように記述ができる。
struct Tree { char *qa ; struct Tree* yes ; struct Tree* no ; } ; struct Tree* dtree( char *s , struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->qa = s ; n->yes = l ; n->no = r ; } return n ; } void main() { struct Tree* p = dtree( "38.5℃以上の発熱がある?" , dtree( "胸がひぃひぃ?" , dtree( "速攻で病院",NULL,NULL ) , dtree( "解熱剤で病院",NULL,NULL ) ) , dtree( "元気がある?" , dtree( "様子をみる",NULL,NULL ) , dtree( "氷枕で病院",NULL,NULL ) ) ) ; // 決定木をたどる struct Tree* d = p ; while( d->yes != NULL || d->no != NULL ) { printf( "%s¥n" , d->qa ) ; scanf( "%d" , &ans ) ; // 回答に応じてyes/noの枝に進む。 if ( ans == 1 ) // yesを選択 d = d->yes ; else if ( ans == 0 ) // noを選択 d = d->no ; } // 最終決定を表示 printf( "%s¥n" , d->qa ) ; }
コンパイラと言語処理系
2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:通訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:翻訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
最初のC++の実装では、C++をトランスレータにかけてC言語を生成し、C言語のコンパイラで動かしていた。
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ
- ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
- エミュレーター
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
近々の例であれば、AppleのARMベースM1チップで intel CPU の動きを真似て動作させる Rosetta2 がトピック。パソコンで古いファミコンのソフトを動かすといった技術もエミュレータ。- 同じCPUで異なるOSを動かす場合は、CPU仮想化。
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
に分けられる。
C言語で機械語が生成されるまで
C言語のプログラムから、機械語の命令が生成されるまでは、以下のような処理が行われる。
一般的にコンパイラの処理というと、ソースコードから機械語を生成するまでの処理を指すが、C言語ではプリプロセッサ処理を含んだり、コンパイラの処理(ソースコードからオブジェクトファイル生成まで)のほかにリンク処理を含んで使われることも多い。
foo.c C言語のソース ↓ プリプロセッサ処理 foo.c(#行の無いC言語のソース) ↓ コンパイラ foo.obj(オブジェクトファイル/中間コード) ↓ (+) ← ライブラリ(scanf,printfなどの組み込み関数などをまとめたもの) ↓ リンカ(リンケージエディタ) foo.exe
コンパイラの処理
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(token)に分解 - 構文解析(syntax analysys)
tokenの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コード(オブジェクトファイル)として出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。
通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) <表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) <加算式> ::= <乗算式> '+' <乗算式> | <乗算式> '-' <乗算式> | <乗算式> ; <乗算式> ::= <数字> '*' <乗算式> | <数字> '/' <乗算式> | <数字> ; <数字> ::= [0-9]+ ;
上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。
コンパイラの技術と関数電卓プログラム(2)
前半では、1文字の数字と簡単な演算子で表現される計算式を再帰下降パーサで計算する処理で、演習を行った。
後半は、さらに実際のコンパイラに近いものとして、 C言語で広く使われている、字句解析ツール(lexical analyzer : lex or flex)、 構文解析ツール(parser : yacc or bison) を使って、 さらに現実的な関数電卓プログラムを作ってみる。
lex or flex による字句解析
lexは、字句解析のプログラムを自動生成するツール。 “%%”行の内側に、正規表現によるルールとその処理(アクション)を書き並べる。 また、“%{ … %}”の内側に、その処理に必要なC言語のソースを書き、 lex で処理を行うと、lex.yy.c というC言語のソースを出力する。
lex.yy.c の中には、yylex() という関数が自動的に作られ、次に示す構文解析ツールから呼び出される。
# flex は、lex の改良版。
(( mycalc.l )) %{ #include <stdio.h> // yaccが出力するヘッダファイル #include "y.tab.h" int yywrap( void ) { // 1: スキャナ終了 // 0: yyin を切り替えて継続 return 1 ; } %} %% "+" return ADD ; "-" return SUB ; "*" return MUL ; "/" return DIV ; "\n" return CR ; [0-9][0-9]* { // 入力はyytextに格納されている。 int temp ; sscanf( yytext , "%d" , &temp ) ; yylval.int_value = temp ; // 返り値は、字句(トークン)の種別を表す定数 return INT_LITERAL; } %%
このプログラムを、lex で処理させると、正規表現“+” 記号に ADD という定数記号を割り振るとか、正規表現の数字列” [0-9][0-9]* “をみつけると、その正規表現に対する{〜}までに書かれたアクションを処理するため、文字列から数値を生成(sscanf)して、その場合の記号に INT_LITERAL という定数記号を割り振る…といった処理のプログラムを自動生成してくれる。(INT_LITERALは構文解析側で定義する定数)
- mycalc.l
- 参考: lex のそれ以外の文字の処理を追加しておいてください。
yacc or bison
yacc ( Yet Another Compiler Compiler ) もしくはその改良版の bison は、構文解析のプログラムを自動生成してくれるツールである。構文をBNF記法で記載すると、字句解析ツール(lex等)を呼び出しながら構文に合わせたトークンの出現に応じた状態遷移のための「遷移テーブル」を自動生成し、 その遷移テーブルを用いた処理のプログラムをC言語で出力してくれる。
先に示した字句解析プログラム(lex)は、様々なトークン(C言語なら演算子やキーワード)とデータ(C言語なら数値や文字列)を返す。このデータには様々な場合考えられるので、 そのトークンに合わせたデータの型を “%union” の中に記載する(中身はC言語の共用体)。 “%%”〜”%%” の間には、BNF記法の(ルール)と、それに対応する処理(アクションは“{ }”の中の部分)を記載する。最初の“%{ … %}”の間には、それ以外の処理に必要なC言語の処理を記載する。
# bison(水牛)は、yacc(山牛)の改良版。
(( mycalc.y )) %{ #include <stdio.h> #include <stdlib.h> // yacc が定義する内部関数のプロトタイプ宣言 #define YYDEBUG 1 extern int yydebug ; extern int yyerror( char const* ) ; extern char *yytext ; extern FILE *yyin ; // 最初に呼び出される関数yyparse() extern int yyparse( void ) ; // 字句解析を呼び出す関数yylex() extern int yylex( void ) ; %} // 字句(トークン)の定義 %union { int int_value; } %token <int_value> INT_LITERAL %token ADD SUB MUL DIV CR %type <int_value> expression term primary_expression %% // 構文の定義 line_list : line // 行の繰り返し | line_list line ; line : expression CR { printf( ">>%d\n" , $1 ) ; } ; // 以下のBNFルールは、単純に再帰に置き換えると // 無限に再帰して異常終了するものであることに注意 expression : term | expression ADD term { $$ = $1 + $3 ; } | expression SUB term { $$ = $1 - $3 ; } ; term : primary_expression | term MUL primary_expression { $$ = $1 * $3 ; } | term DIV primary_expression { $$ = $1 / $3 ; } ; primary_expression : INT_LITERAL ; %% // 補助関数の定義 int yyerror( char const* str ) { fprintf( stderr , "parser error near %s\n" , yytext ) ; return 0 ; } int main( void ) { yydebug = 0 ; // yydebug=1 でデバッグ情報表示 yyin = stdin ; if ( yyparse() ) { // 構文解析を開始 fprintf( stderr , "Error ! Error ! Error !\n" ) ; exit( 1 ) ; } }
yacc では、%%-%%の間に書かれたBNF記法によるルールとアクションをプログラムに変換してくれる。BNF記法の要素は、“要素 : ルール1 {アクション1} | ルール2 {アクション2} | … ;” といった構成になっている。要素 expression に対するルール “expression ADD term“では、ルールの各要素をアクションで参照する時には、$1,$2,$3 といった変数を利用できる。ルール「加算式 + 乗算式」という文になっている部分を見つけると、そのルールに対応するアクション“{ $$ = $1 + $3 ; }”「$1(加算式部分の値)と、$3(乗算式の部分)の値を加えて、$$(式の結果)に代入する」といった処理を生成してくれる。yyparse() 関数を呼び出すと、構文の一番最上部の line_list に相当する処理が起動される。yyerror()は、構文解析の途中で文法エラーになった時に呼び出される関数。
生成されるパーサの内容に興味があるなら、生成される y.tab.c の内容を読むと良い。
make と Makefile
これらのプログラムでは、字句解析プログラム mycalc.l から生成された lex.yy.c, y.tab.h と, 構文解析プログラム mycalc.y から生成された y.tab.c を組合せて1つの実行ファイルにコンパイルする。 これらの手順は煩雑なので、make ツールを使う。
make は、 Makefile に記載されている“ターゲット”と、それを作るために必要な“依存ファイル”、 “依存ファイル”から”ターゲット”を生成する処理“アクション”から構成される。 make は、ターゲットと依存ファイルの更新時間を比較し、 必要最小限の処理を行う。
基本的な Makefile の書き方は、
ターゲット: 依存ファイル... アクション # アクションの前はタブ
の様に書き、依存ファイルが更新されていたら、アクションを実行し、ターゲットを更新する。
以下に、今回の課題で使用する Makefile を示す。
(( Makefile )) # 最終ターゲット mycalc: y.tab.o lex.yy.o gcc -o mycalc y.tab.o lex.yy.o # 構文解析処理 y.tab.o: mycalc.y bison -dy mycalc.y # -dy : yacc互換モード gcc -c y.tab.c # 字句解析処理 lex.yy.o: mycalc.l mycalc.y flex -l mycalc.l # -l : lex互換モード gcc -c lex.yy.c # 生成ファイルの削除ルール clean:; rm mycalc y.tab.c y.tab.h lex.yy.c *.o (( ファイルの依存関係のイメージ図 )) mycalc.l mycalc.y | \ | lex.yy.c y.tab.h y.tab.c | \ | lex.yy.o y.tab.o \ / mycalc
この課題にあたり、後半の実験では flex, bison などの unix 系プログラミング環境を利用する。
macOS の利用者であれば MacPorts や Homebrew 、Windows 利用者であれば、wsl2(Windows subsystem for Linux) や Cygwinなどをインストールし実行すること。
今回の実験であれば、linux(Debian系)ならば、”sudo apt-get install flex bison gcc make” にて、必要なパッケージをインストールして実験を行うこと。
コンパイラの技術と関数電卓プログラム(1)
コンパイラを作るための技術の基礎を学んでもらうために、 簡単な関数電卓プログラム作成を課題とする。 基本は、printf( “%d” , eval( “1+2*3”) ) みたいな計算プログラムを作成する。
計算式から、計算処理を行う場合、演算子の優先順位を正しく処理できることが求められる。
一般的には、計算の機械語を生成する場合、データを準備して計算という方法であり、 逆ポーランド記法変換が行われる。
たとえば、”1+2×3″は、”1,2,+,3,×” といった表記に改められ、変換後の式は スタックを用いて、「値はpush,演算子はpop,pop,計算して,push」という 単純なルールで処理すれば、計算を行うことができる。
字句解析と構文解析
このような、計算式の処理を実行する場合、”1“,”+“,”2“,”✳︎“,”3“という 字句に切り分ける処理を、字句解析という。 この結果から、”式✳︎式”なら掛け算、”式+式”は足し算といった、 前後の字句の組合せから、構文木を生成する処理は、構文解析という。 コンパイラであれば、この後、最適化、コード生成などが行われる。
C言語であれば、コンパイル前後には以下の処理が行われる。
- プリプロセッサ処理
↓(#の無いCコード) - コンパイル処理
- 字句解析 — 今回の実験
- 構文解析 — 今回の実験のキモ
- コード生成
↓(中間コード)
- リンク処理 ← ライブラリ
↓ - 機械語
字句解析と正規表現
字句(トークン)の切り出しでは、その文法を説明する際には、正規表現などを用いる。
今回の実験の後半では、正規表現に合わせたプログラミングツール(flex)を用いるが、前半では正規表現に合わせた文字列処理をプログラムする必要がある。
簡単な正規表現 . 任意の文字 * 直前の0回以上の繰り返し + 直前の1回以上の繰り返し [0-9a-z] カッコの中の文字のいずれか - は範囲を示す。 (a|b|c) 丸カッコの|区切りのうちのどれか。 (例) C言語の変数の正規表現 [a-zA-Z_][a-zA-Z0-9_]*
構文解析の方法
構文解析では、構文を状態遷移として考え、この式の後にくる可能性のある状態は? という考えで解析を行う。 このような構文は、一般的にバッカス・ナウア記法(BNF)などで表現されることが多い。 また、簡単な構文解析であれば、
などが用いられる。
再帰下降パーサ
簡単な再帰下降パーサの演習として、1桁の数字と+,*演算子の処理プログラムを 考える。
加減,乗除の式のバッカス記法(BNF) exp_加減 ::= exp_乗除 '+' exp_乗除 | exp_乗除 '-' exp_乗除 | exp_乗除 (注意)このBNFは若干間違っているよ!! ; exp_乗除 ::= DIGIT '*' exp_乗除 | DIGIT '/' exp_乗除 | DIGIT ; DIGIT ::= [0-9] ;
練習として、上に示す再帰下降パーサに、 (1) “(“,”)” を含めた場合の、BNF 記法を考え、(2) 数値として複数桁が使えるようにし、 (3) 式を読みやすくする空白を処理できるように 改造せよ。
意思決定木と構文解析
前回までの授業で2分探索木の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木と構文木を紹介する。
意思決定木
意思決定木の説明ということで、yes/noクイズの例を示す。これは2分木であり、質問を繰り返し最後に答えを示すのであれば、以下のようなプログラムになるであろう。
((意思決定木の例:うちの子供が発熱した時)) 38.5℃以上の発熱がある? no/ \yes 元気がある? むねがひいひい? yes/ \no no/ \yes 様子をみる 氷枕で病院 解熱剤で病院 速攻で病院
このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。また、各ノードは質問のための文字列を持ち、末端のノードでは質問への回答の文字列となる。
struct Tree { char *qa ; struct Tree* yes ; struct Tree* no ; } ; struct Tree* dtree( char *s , struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->qa = s ; n->yes = l ; n->no = r ; } return n ; } void main() { struct Tree* p = dtree( "38.5℃以上の発熱がある?" , dtree( "胸がひぃひぃ?" , dtree( "速攻で病院",NULL,NULL ) , dtree( "解熱剤で病院",NULL,NULL ) ) , dtree( "元気がある?" , dtree( "様子をみる",NULL,NULL ) , dtree( "氷枕で病院",NULL,NULL ) ) ) ; // 決定木をたどる struct Tree* d = p ; while( d->yes != NULL || d->no != NULL ) { printf( "%s¥n" , d->qa ) ; scanf( "%d" , &ans ) ; // 回答に応じてyes/noの枝に進む。 if ( ans == 1 ) // yesを選択 d = d->yes ; else if ( ans == 0 ) // noを選択 d = d->no ; } // 最終決定を表示 printf( "%s¥n" , d->qa ) ; }
コンパイラと言語処理系
2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:翻訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:通訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ
- ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
に分けられる。
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(トークン: token)に分解 - 構文解析(syntax analysys)
トークンの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コードとして出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。
通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) <表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) <加算式> ::= <乗算式> '+' <乗算式> | <乗算式> '-' <乗算式> | <乗算式> ; <乗算式> ::= <数字> '*' <乗算式> | <数字> '/' <乗算式> | <数字> ; <数字> ::= [0-9]+ ;
# 上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。
# どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。
コンパイラの技術と関数電卓プログラム(2)
前半では、1文字の数字と簡単な演算子で表現される計算式を再帰下降パーサで計算する処理で、 演習を行った。
後半は、さらに実際のコンパイラに近いものとして、 C言語で広く使われている、字句解析ツール(lexical analyzer : lex or flex)、 構文解析ツール(parser : yacc or bison) を使って、 さらに現実的な関数電卓プログラムを作ってみる。
lex or flex による字句解析
lexは、字句解析のプログラムを自動生成するツール。 “%%”行の内側に、正規表現によるルールとその処理(アクション)を書き並べる。 また、“%{ … %}”の内側に、その処理に必要なC言語のソースを書き、 lex で処理を行うと、lex.yy.c というC言語のソースを出力する。
lex.yy.c の中には、yylex() という関数が自動的に作られ、構文解析ツールから呼び出される。
# flex は、lex の改良版。
(( mycalc.l )) %{ #include <stdio.h> // yaccが出力するヘッダファイル #include "y.tab.h" int yywrap( void ) { // 1: スキャナ終了 // 0: yyin を切り替えて継続 return 1 ; } %} %% "+" return ADD ; "-" return SUB ; "*" return MUL ; "/" return DIV ; "\n" return CR ; [0-9][0-9]* { // 入力はyytextに格納されている。 int temp ; sscanf( yytext , "%d" , &temp ) ; yylval.int_value = temp ; // 返り値は、字句(トークン)の種別を表す定数 return INT_LITERAL; } %%
このプログラムを、lex で処理させると、“+” 記号に ADD という定数記号を割り振るとか、数字列” [0-9][0-9]* “をみつけると、文字列から数値を生成(sscanf)して、その場合の記号に INT_LITERAL という定数記号を割り振る…といった処理のプログラムを生成してくれる。(INT_LITERALは構文解析側で定義する定数)
yacc or bison
yacc ( Yet Another Compiler Compiler ) もしくはその改良版の bison は、構文解析のプログラムを自動生成してくれるツールである。構文をBNF記法で記載すると、字句解析ツール(lex等)を呼び出しながら構文に合わせたトークンの出現に応じた状態遷移のための「遷移テーブル」を自動生成し、 その遷移テーブルを用いた処理のプログラムをC言語で出力してくれる。
字句解析プログラムは、様々なトークンとデータを返す。このデータには様々な場合考えられるので、 そのトークンに合わせたデータの型を “%union” の中に記載(C言語の共用体参照)する。 “%%”〜”%%” の間には、BNF記法の(ルール)と、それに対応する処理(アクションは“{ }”の中の部分)を記載する。最初の“%{ … %}”の間には、処理に必要なC言語を記載する。
# bison(水牛)は、yacc(山牛)の改良版。
(( mycalc.y )) %{ #include <stdio.h> #include <stdlib.h> // yacc が定義する内部関数のプロトタイプ宣言 #define YYDEBUG 1 extern int yydebug ; extern int yyerror( char const* ) ; extern char *yytext ; extern FILE *yyin ; // 最初に呼び出される関数yyparse() extern int yyparse( void ) ; // 字句解析を呼び出す関数yylex() extern int yylex( void ) ; %} // 字句(トークン)の定義 %union { int int_value; } %token <int_value> INT_LITERAL %token ADD SUB MUL DIV CR %type <int_value> expression term primary_expression %% // 構文の定義 line_list : line // 行の繰り返し | line_list line ; line : expression CR { printf( ">>%d\n" , $1 ) ; } ; expression : term | expression ADD term { $$ = $1 + $3 ; } | expression SUB term { $$ = $1 - $3 ; } ; term : primary_expression | term MUL primary_expression { $$ = $1 * $3 ; } | term DIV primary_expression { $$ = $1 / $3 ; } ; primary_expression : INT_LITERAL ; %% // 補助関数の定義 int yyerror( char const* str ) { fprintf( stderr , "parser error near %s\n" , yytext ) ; return 0 ; } int main( void ) { yydebug = 0 ; // yydebug=1 でデバッグ情報表示 yyin = stdin ; if ( yyparse() ) { // 構文解析を開始 fprintf( stderr , "Error ! Error ! Error !\n" ) ; exit( 1 ) ; } }
このプログラムを、yacc で処理すると、“expression ADD term“のルール「加算式 + 乗算式」という文になっている部分を見つけると、そのルールに対応するアクション“{ $$ = $1 + $3 ; }”「$1(加算式部分の値)と、$3(乗算式の部分)の値を加えて、$$(式の結果)を求める」といった処理を生成してくれる。yyparse() 関数を呼び出すと、構文の一番最上部の line_list に相当する処理が起動される。yyerror()は、構文解析の途中で文法エラーになった時に呼び出される関数。
生成されるパーサの内容に興味があるなら、生成される y.tab.c の内容を読むと良い。
make と Makefile
これらのプログラムでは、字句解析プログラム mycalc.l から生成された lex.yy.c, y.tab.h と, 構文解析プログラム mycalc.y から生成された y.tab.c を組合せて1つの実行ファイルにコンパイルする。 これらの手順は煩雑なので、make ツールを使う。
make は、 Makefile に記載されている“ターゲット”と、それを作るために必要な“依存ファイル”、 “依存ファイル”から”ターゲット”を生成する処理“アクション”から構成される。 make は、ターゲットと依存ファイルの更新時間を比較し、 必要最小限の処理を行う。
基本的な Makefile の書き方は、
ターゲット: 依存ファイル... アクション # アクションの前はタブ
の様に書き、依存ファイルが更新されていたら、アクションを実行し、ターゲットを更新する。
以下に、今回の課題で使用する Makefile を示す。
(( Makefile )) # 最終ターゲット mycalc: y.tab.o lex.yy.o gcc -o mycalc y.tab.o lex.yy.o # 構文解析処理 y.tab.o: mycalc.y bison -dy mycalc.y # -dy : yacc互換モード gcc -c y.tab.c # 字句解析処理 lex.yy.o: mycalc.l mycalc.y flex -l mycalc.l # -l : lex互換モード gcc -c lex.yy.c clean:; rm mycalc y.tab.c y.tab.h lex.yy.c *.o (( ファイルの依存関係のイメージ図 )) mycalc.l mycalc.y | \ | lex.yy.c y.tab.h y.tab.c | \ | lex.yy.o y.tab.o \ / mycalc
この課題にあたり、後半の実験では flex, bison などの unix 系プログラミング環境を利用する。
macOS の利用者であれば MacPorts や、Windows 利用者であれば、wsl(Windows subsystem for Linux) などをインストールし実行すること。
今回の実験であれば、linux(Debian系)ならば、”sudo apt-get install flex bison gcc make” にて、必要なパッケージをインストールして実験を行うこと。
コンパイラの技術と関数電卓プログラム(1)
コンパイラを作るための技術の基礎を学んでもらうために、 簡単な関数電卓プログラム作成を課題とする。 基本は、printf( “%d” , eval( “1+2*3”) ) みたいな計算プログラムを作成する。
計算式から、計算処理を行う場合、演算子の優先順位を正しく処理できることが求められる。
一般的には、計算の機械語を生成する場合、データを準備して計算という方法であり、 逆ポーランド記法変換が行われる。
たとえば、”1+2*3″は、”1,2,+,3,*” といった表記に改められ、変換後の式は スタックを用いて、「値はpush,演算子はpop,pop,計算して,push」という 単純なルールで処理すれば、計算を行うことができる。
字句解析と構文解析
このような、計算式の処理を実行する場合、”1“,”+“,”2“,”✳︎“,”3“という 字句に切り分ける処理を、字句解析という。 この結果から、”式✳︎式”なら掛け算、”式+式”は足し算といった、 前後の字句の組合せから、構文木を生成する処理は、構文解析という。 コンパイラであれば、この後、最適化、コード生成などが行われる。
C言語であれば、コンパイル前後には以下の処理が行われる。
- プリプロセッサ処理
↓(#の無いCコード) - コンパイル処理
- 字句解析
- 構文解析
- コード生成
↓(中間コード)
- リンク処理 ← ライブラリ
↓ - 機械語
字句解析と正規表現
字句(トークン)の切り出しでは、その文法を説明する際には、正規表現なども用いられる。
簡単な正規表現 . 任意の文字 * 直前の0回以上の繰り返し + 直前の1回以上の繰り返し [0-9a-z] カッコの中の文字のいずれか - は範囲を示す。 (a|b|c) 丸カッコの|区切りのうちのどれか。 (例) C言語の変数の正規表現 [a-zA-Z_][a-zA-Z0-9_]*
構文解析の方法
構文解析では、構文を状態遷移として考え、この式の後にくる可能性のある状態は? という考えで解析を行う。 このような構文は、一般的にバッカス・ナウア記法(BNF)などで表現されることが多い。 また、簡単な構文解析であれば、
などが用いられる。
再帰下降パーサ
簡単な再帰下降パーサの演習として、1桁の数字と+,*演算子の処理プログラムを 考える。
加減,乗除の式のバッカス記法(BNF) exp_加減 ::= exp_乗除 '+' exp_乗除 | exp_乗除 '-' exp_乗除 | exp_乗除 ; exp_乗除 ::= DIGIT '*' exp_乗除 | DIGIT '/' exp_乗除 | DIGIT ; DIGIT ::= [0-9] ;
練習として、上に示す再帰下降パーサに、 (1) “(“,”)” を含めた場合の、BNF 記法を考え、(2) 数値として複数桁が使えるようにし、 (3) 式を読みやすくする空白を処理できるように 改造せよ。
意思決定木と構文解析
意思決定木
意思決定木の説明ということで、yes/noクイズの例を示しながら、2分木になっていることを 説明しプログラムを紹介。
((意思決定木の例:うちの子供が発熱した時)) 38.5℃以上の発熱がある? no/ \yes 元気がある? むねがひいひい? yes/ \no no/ \yes 様子をみる 氷枕で病院 解熱剤で病院 速攻で病院
このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。これは2分木と同じであり、このような処理は以下のように記述ができる。
struct Tree { char *qa ; struct Tree* yes ; struct Tree* no ; } ; struct Tree* dtree( char *s , struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->qa = s ; n->yes = l ; n->no = r ; } return n ; } void main() { struct Tree* p = dtree( "38.5℃以上の発熱がある?" , dtree( "胸がひぃひぃ" , dtree( "速攻で病院",NULL,NULL ) , dtree( "解熱剤で病院",NULL,NULL ) ) , dtree( "元気がある?" , dtree( "様子をみる",NULL,NULL ) , dtree( "氷枕で病院",NULL,NULL ) ) ) ; struct Tree* d = p ; while( d->yes != NULL || d->no != NULL ) { printf( "%s¥n" , d->qa ) ; scant( "%d" , &ans ) ; if ( ans == 1 ) d = d->yes ; else if ( ans == 0 ) d = d->no ; } printf( "%s¥n" , d->qa ) ; }
コンパイラと言語処理系
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:翻訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:通訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ:ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ:ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
に分けられる。
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(token)に分解 - 構文解析(syntax analysys)
tokenの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コードとして出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、特殊である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上で中間コードをインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラにより、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) 表現 ::= 表現1... | 表現2... | 表現3... | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) 加算式 ::= 乗算式 '+' 乗算式 | 乗算式 '-' 乗算式 | 乗算式 ; 乗算式 ::= 数字 '*' 乗算式 | 数字 '/' 乗算式 | 数字 ; 数字 ::= [0-9]+ ;
上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。
電卓プログラム作成の補足
専攻科実験で、「字句解析と構文解析で電卓プログラムを作ろう」というネタを実施中。
サンプルプログラムを見せて、課題の1つが「式を読みやすくするための空白が使えるように改良」としているが、学生さんより、『最初に空白を全部消してから処理するのはアリ?』との質問。
ひとまずは動くプログラムをつくってくれればいいけど….
でも、空白を先に全部消してから、トークン切り出しをやると、色々とトラブルが起こる。
((例1)) x=-1 ; 昔、私が学生の頃に使ったCコンパイラは、"+="演算子を、 "=+"と書いても良かった。だから、"x -= 1"と誤認され、 プログラムがバグった。この経験以降、代入文の"="の前後 とかややこしい演算子の式で、空白を適所に打たないヤツは シロウト判定している。 今回の質問のように、空白を除去してから字句解析を行うと、 "x = -1"と誤認されないように空白を入れあっても、 "x -= 1"に誤認される。 ((例2)) C++でのテンプレートクラスでは、<>の中に型を 書いたりするけど、Foot<int>といった型も 出てくる。んで、<>の中にテンプレートクラス が出てくると、Foo< Bar<int> > といった 型を使う場合がある。でも、空白除去後に字句解析をすると、 Foo<Bar<int>>となり、右シフト演算子になる。 → C++03 から C++11 での仕様の変化 ・C++03までは、テンプレートの">"の前後には空白を入れるべき。 ・C++11からは、"<"のトークンの数で">>"でも区別してくれる。
専攻科実験・コンパイラと関数電卓プログラム作成
- コンパイラの技術と関数電卓プログラム(1)
- 課題
- 複数桁の数字が使えること。
- 式中に空白が使えること。
- 何らかの演算子を追加すること。
- (例) %,単項演算子のマイナスなど
- 演算子が左結合か右結合か確認すること。
- オプション課題
- 変数が使えること。
(変数名は1文字のA-Zといったもので良い)
- 変数が使えること。
- レポート内容
- コンパイラ技術の概要、課題(1)の説明・ソース・動作検証、考察
- 課題
- コンパイラの技術と関数電卓プログラム(2)
- 課題
- 基本的に、lex+yaccで(1)と同様の課題完成を目指す。
- レポート内容
- lex,yaccの概要、課題(2)の説明・ソース・動作検証、考察
- 課題