ホーム » 「コンストラクタ」タグがついた投稿

タグアーカイブ: コンストラクタ

2020年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

最近の投稿(電子情報)

アーカイブ

カテゴリー

構造体からオブジェクト指向プログラミング

構造体でオブジェクト指向もどき

前回の講義では、構造体渡しを使ったプログラミングをすることで、データ(オブジェクト)に対して命令をするプログラミングスタイルについて説明をした。これによりデータ隠蔽化・手続き隠蔽化を行うことができる。これらをまとめて隠蔽化とかブラックボックス化という。

例えば、名前と年齢の構造体で処理を記述する場合、 以下の様な記載を行うことで、データ設計者データ利用者で分けて 仕事ができる。

// この部分はデータ構造の設計者が書く
// データ構造を記述
struct Person {
   char name[10] ;
   int  age ;
} ;
// データに対する処理を記述
void set_Person( struct Person* p , char s[] , int a ) {
   // ポインタの参照で表記
   strcpy( (*p).name , s ) ;
   (*p).age = a ;
}
void print_Person( struct Person* p ) {
   // アロー演算子で表記 "(*p).name" は "p->name" で書ける
   printf( "%s %d¥n" ,
           p->name , p->age ) ;
}
// この部分は、データ利用者が書く
int main() {
   // Personの中身を知らなくてもいいから配列を定義(データ隠蔽)
   struct Person saitoh ;
   set_Person( &saitoh , "saitoh" , 55 ) ;

   struct Person table[ 10 ] ; // 初期化は記述を省略
   for( int i = 0 ; i < 10 ; i++ ) {
      // 出力する...という雰囲気で書ける(手続き隠蔽)
      print_Person( &table[i] ) ;
   }
   return 0 ;
}

こういった隠蔽化をすることにより、データ構造の中身やその手続きの内部を記述するプログラマーと、そのデータや手続きを使うプログラマーに分かれて仕事をすることができるようになる。たとえ1人であったとしても、原因を究明する時に中身の問題か使う側の問題かを切り分けることが容易となり、プログラム作成の効率が良くなる。

C++のクラスで表現

上記のプログラムをそのままC++に書き直すと以下のようになる。

#include <stdio.h>
#include <string.h>

// この部分はクラス設計者が書く
class Person {
private: // クラス外からアクセスできない部分
   // データ構造を記述
   char name[10] ; // メンバーの宣言
   int  age ;
public: // クラス外から使える部分
   // データに対する処理を記述
   void set( char s[] , int a ) { // メソッドの宣言
      // pのように対象のオブジェクトを明記する必要はない。
      strcpy( name , s ) ;
      age = a ;
   }
   void print() {
      printf( "%s %d¥n" , name , age ) ;
   }
} ; // ← 注意ここのセミコロンを書き忘れないこと。

// この部分はクラス利用者が書く
int main() {
   Person saitoh ;
   saitoh.set( "saitoh" , 55 ) ;
   saitoh.print() ;

   // 文法エラーの例
   printf( "%d¥n" , saitoh.age ) ; // phoneはprivateなので参照できない。
   return 0 ;
}

この様にC++のプログラムに書き換えたが、内部の処理は元のC言語と同じであり、オブジェクトへの関数呼び出し saitoh.set(…) などが呼び出されても、set() は、オブジェクトのポインタを引数して持つ関数として、機械語が生成されるだけである。

用語の解説:C++のプログラムでは、データ構造とデータの処理を、並行しながら記述する。 データ構造に対する処理は、メソッド(method)と呼ばれる。 データ構造とメソッドを同時に記載したものは、クラス(class)と呼ぶ。 そのデータに対し具体的な値や記憶域が割り当てられたものオブジェクト(object)と呼ぶ。

C++では隠蔽化をさらに明確にするために、private:public: を指定できる。private: は、そのメソッドの中でしか使うことができない要素や関数であり、public: は、メソッド以外からでも参照したり呼出したりできる。オブジェクト指向でプログラムを書くとき、データ構造や関数の処理方法は、クラス内部の設計者しか触れないようにしておけば、その内部を改良することができる。しかし、クラスの利用者が勝手に内部データを触っていると、内部設計者が改良するとそのプログラムは動かないものになってしまう。

隠蔽化を的確に行うことで、クラス内部を常に改良できるがこれをリファクタリングと呼ぶ。

クラス限定子

前述のプログラムでは、class 宣言の中に関数内部の処理を記述していた。しかし関数の記述が長い場合は、書ききれないこういう場合はクラス限定子を使って記述する。

class Person {
private:
   char name[10] ;
   int  age ;
public:
   // メソッドのプロトタイプ宣言
   void set( char s[] , int a) ;
   void print() ;
} ;

void Person::set( char s[] , int a ) {
   strcpy( name , s ) ;
   age = a ;
}
void Person::print() {
   printf( "%s %d¥n" , name , age ) ;
}

inline 関数と開いたサブルーチン

オブジェクト指向では、きわめて簡単な処理な関数を使うことも多い。
例えば、上記のプログラム例で、クラス利用者に年齢を読み出すことは許しても書き込みをさせたくない場合、以下のような、関数を定義する。(getterメソッド)

逆に、値の代入専用のメソッドは、setterメソッドと呼ぶ

class Person {
private:
   char name[10] ;
   int  age ;
public:
   // メソッドのプロトタイプ宣言
   inline int get_age() { return age ; } // getter
   inline void set_age( int a ) { age = a ; } // setter
} ;

ここで inline とは、開いた関数(開いたサブルーチン)を作る指定子である。通常、機械語を生成するとき中身を参照するだけの機械語と、get_age() を呼出したときに関数呼び出しを行う機械語が作られる(閉じたサブルーチン)が、age を参照するだけのために関数呼び出しの機械語はムダが多い。inline を指定すると、入り口出口のある関数は生成されず、get_age() の処理にふさわしい age を参照するだけの機械語が生成される。

# 質問:C言語で開いたサブルーチンを使うためにはどういった機能があるか?

コンストラクタとデストラクタ

プログラムを記述する際、よくある間違いでは、初期化忘れや終了処理忘れがある。

このための機能がコンストラクタ(構築子)とデストラクタ(破壊子)という。

コンストラクタは、返り値を記載しない関数でクラス名(仮引数…)の形式で宣言し、オブジェクトの宣言時に初期化を行う処理として呼び出される。デストラクタは、~クラス名() の形式で宣言し、オブジェクトが不要となる際に、自動的に呼び出し処理が埋め込まれる。

class Person {
private:
   // データ構造を記述
   char name[10] ;
   int  age ;
public:
   Person( char s[] , int a ) { // コンストラクタ
      strcpy( name , s ) ;
      age = a ;
   }
   ~Person() { // デストラクタ
      print() ;
   }
   void print() {
      printf( "%s %d¥n" , name , age ) ;
   }
} ;

int main() {
   Person saitoh( "saitoh" , 55 ) ; // オブジェクトsaitohを"saitoh"と55で初期化
   return 0 ;
   // main を抜ける時にオブジェクトsaitohは不要になるので、
   // デストラクタが自動的に呼び出され、"saitoh 55" が表示。
}

コンストラクタと複素数クラス

コンストラクタ

プログラミングでは、データの初期化忘れによる間違いもよく発生する。これを防ぐために、C++ のクラスでは、コンストラクタ(構築子)がある。データ構造の初期化専用の関数。

// コンストラクタ
#include <stdio.h>
#include <string.h>

class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   void print() {
      printf( "%s %d¥n" , name , age ) ;
   }
   Person() {                             // コンストラクタ(A)
      name[0] = '¥0' ; // 空文字列
      age = 0 ;
   }
   Person( const char str[] , int ag ) {  // コンストラクタ(B)
      strcpy( name , str ) ;
      age = ag ;
   }
   ~Person() {                            // デストラクタ
      print() ; // 内容の表示
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;     // (A)で初期化
   Person tomoko() ;                      // (B)で初期化
   saitoh.print() ;  // "t-saitoh 55" の表示
   tomoko.print() ;  // " 0" の表示

   return 0 ;        // この時点で saitoh.~Person()
                     // tomoko.~Person() が自動的に
}                    // 呼び出される。

コンストラクタと反対に、デストラクタは、データが不要となった時に自動的に呼び出される関数。

このクラスの中には、引数無しのコンストラクタと、引数ありのコンストラクタが出てくる。C++では、同じ名前の関数でも引数の数や型に応じて呼出す関数を適切に選んでくれる。(関数のオーバーロード)

デストラクタは、データが不要となった時に自動的に呼び出してくれる関数で、一般的にはC言語でのファイルの fopen() , fclose() のようなものを使う処理で、コンストラクタで fopen() , デストラクタで fclose() を呼出すように使うことが多いだろう。同じように、コンストラクタで malloc() を呼出し、デストラクタで free() を呼出すというのが定番の使い方だろう。

複素数クラスの例

隠蔽化と基本的なオブジェクト指向の練習課題として、複素数クラスをあげる。ここでは、複素数の加算・乗算を例に説明をするので、減算・除算などの処理を記述することで、クラスの扱いに慣れてもらう。

直交座標系

#include <stdio.h>
#include <math.h>

// 直交座標系の複素数クラス
class Complex {
private:
   double re ; // 実部
   double im ; // 虚部
public:
   void print() {
      printf( "%lf + j%lf¥n" , re , im ) ;
   }
   Complex( double r , double i ) {
      re = r ;
      im = i ;
   }
   Complex() {
      // デフォルトコンストラクタ
      re = im = 0.0 ;
   }
   void add( Complex z ) {
      // 加算は、直交座標系だと極めてシンプル
      re = re + z.re ;
      im = im + z.im ;
   }
   void mul( Complex z ) {
      // 乗算は、直交座標系だと、ちょっと煩雑
      double r = re * z.re - im * z.im ;
      double i = re * z.im + im * z.re ;
      re = r ;
      im = i ;
   }
   double get_re() {
      return re ;
   }
   double get_im() {
      return im ;
   }
   double get_abs() { // 絶対値
      return sqrt( re*re + im*im ) ;
   }
   double get_arg() { // 偏角
      return atan2( im , re ) ;
   }
} ; // ←何度も繰り返すけど、ここのセミコロン忘れないでね
int main() {
   // 複素数を作る
   Complex a( 1.0 , 2.0 ) ;
   Complex b( 2.0 , 3.0 ) ;

   // 複素数の計算
   a.print() ;
   a.add( b ) ;
   a.print() ;
   a.mul( b ) ;
   a.print() ;

   return 0 ;
}

極座標系

上記の直交座標系の Complex クラスは、加減算の関数は単純だけど、乗除算の関数を書く時には面倒になってくる。この場合、極座標系でプログラムを書いたほうが判りやすいかもしれない。

// 局座標系の複素数クラス
class Complex {
private:
   double r ;  // 絶対値 r
   double th ; // 偏角   θ
public:
   void print() {
      printf( "%lf ∠ %lf¥n" , r , th / 3.14159265 * 180.0 ) ;
   }
   Complex() {
      r = th = 0.0 ;
   }
   // 表面的には、同じ使い方ができるように
   //  直交座標系でのコンストラクタ
   Complex( double x , double y ) {
      r  = sqrt( x*x + y*y ) ;
      th = atan2( y , x ) ;    // 象限を考慮したatan()
   }
   // 極座標系だと、わかりやすい処理
   void mul( Complex z ) {
      // 極座標系での乗算は
      r = r * z.r ;    // 絶対値の積
      th = th + z.th ; // 偏角の和
   } 
   // 反対に、加算は面倒な処理になってしまう。
   void add( Complex z ) {
      ; // 自分で考えて
   }
   // 
   double get_abs() {
      return r ;
   }
   double get_arg() {
      return th ;
   }
   double get_re() {
      return r * cos( th ) ;
   }
   double get_im() {
      return r * sin( th ) ;
   }
} ; // ←しつこく繰り返すけど、セミコロン忘れないでね(^_^;

このように、プログラムを開発していると、当初は直交座標系でプログラムを記述していたが、途中で極座標系の方がプログラムが書きやすいという局面となるかもしれない。しかし、オブジェクト指向による隠蔽化を正しく行っていれば、利用者に影響なく「データ構造」や「その手続き(メソッド)」を書換えることも可能となる。

このように、プログラムをさらに良いものとなるべく書換えることは、オブジェクト指向ではリファクタリングと呼ぶ。
正しくクラスを作っていれば、クラス利用者への影響が最小にしながらリファクタリングが可能となる。

メソッドのプロトタイプ宣言

class 構文では、{} の中に、要素の定義や、メソッドの記述を行うと説明してきたが、メソッド内の処理が長い場合もある。

この時に、すべてを {} の中に書こうとすると、全体像が見渡せない。こういう時には、以下のように、メソッドのプロトタイプ宣言と、メソッドの実体の記述を別に記載する。

class Complex {
private:
   double re , im ;
public:
   Complex( double r , double i ) ; // メソッドのプロトタイプ宣言
   void print() ;
} ;
// メソッドの実体
Complex::Complex( double r , double i ) {
   re = r ;
   im = i ;
}
void Complex::print() {
   printf( "%lf + j %lf" , re , im ) ;
}

ゲッター/セッター (経験者向け解説)

それぞれのクラス宣言では、get_re() , get_im() , get_abs() , get_arg() というメソッドを記載した。このように記述しておくと、クラス外で re , im といったメンバを public 指定をせずに、リファクタリングしやすいクラスにすることができる。(re, im を public にしてしまうと、クラス外でオブジェクトへの代入が可能となる。)

PHPなどの private や public の機能のないオブジェクト指向言語では、get_xx() といった要素の参照しかできないメソッドを作ったうえで、クラス外でメンバ参照をしないというマナーを徹底させることで、public 機能の代用し、隠蔽化を徹底させることも多い。

この場合、参照専用の get_xx() と同じように、要素に値を設定するためのメソッド set_xx( 値… ) を作るとプログラムの意味が分かりやすくなる。こういったクラスの参照や代入のメソッドは、getter(ゲッター),setter(セッター)と呼ぶ。

ゲッターやセッターメソッドでは、要素を参照(あるいは代入)するだけといった極めて単純な関数を作ることになる。この場合、関数呼び出しの処理時間が無駄になる。この対処として、C++ には inline 関数機能がある。関数(メソッド)の前に、inline を指定すると、コンパイラは関数呼び出し用の命令を生成せず、それと同じ処理となる命令を埋め込んでくれる。(開いたサブルーチン)

class Complex {
private:
   double re , im ;
public:
   :
   inline void get_re() {
      return re ;
   }
} ;

const 指定 (経験者向け解説)

C++ では、間違って値を書き換えるような処理を書けないようにするための、const 指定の機能がある。

void foo( const int x ) {
   x++ ; // 定数を書き換えることはできない。
   printf( "%d\n" , x ) ;
}
int main() {
   const double pi = 3.141592 ;
   // C言語で #define PI 3.141592 と同等

   int a = 123 ;
   foo( a ) ;

   return 0 ;
}

前に説明した、getter メソッドは要素を参照するだけで、オブジェクトの中身が変化しない。逆に言えば、getter のメソッド内にはオブジェクトに副作用のある処理を書いてはいけない。こういった用途に、オブジェクトを変化させないメソッド宣言がある。先の、get_re() は、

class ... {
   :
   inline double get_re() const {
      re = 0 ; // 文法エラー
      return re ;
   }
} ;