ホーム » 「集合計算」タグがついた投稿
タグアーカイブ: 集合計算
集合とリスト処理
リスト構造は、必要に応じてメモリを確保するデータ構造であり、データ件数に依存しないプログラム が記述できる。その応用として、集合処理を考えてみる。集合処理の記述には、2進数を使った方式やリストを用いた方法が一般的である。以下にその処理について示す。
bit演算子
2進数を用いた集合処理を説明する前に、2進数を使った計算に必要なbit演算子について復習してみる。
bit演算子 | 計算の意味 | 関連知識 |
---|---|---|
& bit AND | 3 & 5 0011)2 & 0101)2= 0001)2 |
論理積演算子 if ( a == 1 && b == 2 ) … |
| bit OR | 3 | 5 0011)2 | 0101)2= 0111)2 |
論理和演算子 if ( a == 1 || b == 2 ) … |
~ bit NOT | ~5 ~ 00..00,0101)2= 11..11,1010)2 |
論理否定演算子 if ( !a == 1 ) … |
^ bit EXOR | 3 ^ 5 0011)2 ^ 0101)2= 0110)2 |
|
<< bit 左シフト | 3 << 2 0011)2 << 2 = 001100)2 |
x << y は x * 2y と同じ |
>> bit 右シフト | 12 >> 2 1100)2 >> 2 = 11)2 |
x >> y は x / 2y と同じ |
#include <stdio.h> int main() { // bit演算子と論理演算子 printf( "%d¥n" , 12 & 5 ) ; // 1100 & 0101 = 0100 よって 4が表示される printf( "%d¥n" , 12 && 0 ) ; // 0が表示 論理演算子とbit演算子の違い printf( "%d¥n" , 12 | 5 ) ; // 1100 | 0101 = 1101 よって 13が表示される printf( "%d¥n" , 12 || 0 ) ; // 1が表示 // シフト演算子 printf( "%d¥n" , 3 << 2 ) ; // 12が表示 printf( "%d¥n" , 12 >> 2 ) ; // 3が表示 // おまけ printf( "%d¥n" , ~(unsigned)12 + 1 ) ; // 2の補数(NOT 12 + 1) = -12 return 0 ; }
2進数を用いた集合計算
リストによる集合の前に、もっと簡単な集合処理を考える。
最も簡単な方法は、要素に含まれる=1 か 含まれない=0 を配列に覚える方法であろう。数字Nが集合に含まれる場合は、配列[N]に1を覚えるものとする。この方法で積集合などを記述した例を以下に示す。ただし、自分で考える練習として穴埋めを含むので注意。
しかし、上述のプログラムでは、要素に含まれる/含まれないという1bitの情報を、整数型で保存しているためメモリの無駄である。
データ件数の上限が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。
2進数を用いた集合計算
扱うデータ件数が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。
以下のプログラムは、0〜31の数字を2進数の各ビットに対応付けし、 ba = {1,2,3} , bb = {2,4,6} , bc= {4,6,9} を要素として持つ集合で、ba ∩ bb , bb ∩ bc , ba ∪ bc の計算を行う例である。
// 符号なし整数を uint_t とする。 typedef unsigned int uint_t ; // uint_tのbit数 #define UINT_BITS (sizeof( uint_t ) * 8) // 集合の内容を表示 void bit_print( uint_t x ) { for( int i = 0 ; i < UINT_BITS ; i++ ) if ( (x & (1 << i)) != 0 ) printf( "%d " , i ) ; printf( "\n" ) ; } void main() { // 98,7654,3210 // ba = {1,2,3} = 00,0000,1110 uint_t ba = (1<<1) | (1<<2) | (1<<3) ; // bb = {2,4,6} = 00,0101,0100 uint_t bb = (1<<2) | (1<<4) | (1<<6) ; // bc = {4,6,9} = 10,0101,0000 uint_t bc = (1<<4) | (1<<6) | (1<<9) ; // 集合積(bit AND) bit_print( ba & bb ) ; // ba ∩ bb = {2} bit_print( bb & bc ) ; // bb ∩ bc = {4,6} // 集合和(bit OR) bit_print( ba | bc ) ; // ba ∪ bc = {1,2,3,4,6,9} }
有名なものとして、エラトステネスのふるいによる素数計算を2進数を用いて記述してみる。このアルゴリズムでは、各bitを整数に対応付けし、素数で無いと判断した2進数の各桁に1の目印をつけていく方式である。
uint_t prime = 0 ; // 初期値=すべての数は素数とする。 void filter() { // 倍数に非素数の目印をつける for( int i = 2 ; i < UINT_BITS ; i++ ) { if ( (prime & (1 << i)) == 0 ) { // iの倍数には、非素数の目印(1)をつける for( int j = 2*i ; j < UINT_BITS ; j += i ) prime |= (1 << j) ; } } // 非素数の目印の無い値を出力 for( int i = 2 ; i < UINT_BITS ; i++ ) { // 目印のついていない数は素数 if ( (prime & (1 << i)) == 0 ) printf( "%d\n" , i ) ; } }
リスト処理による積集合
前述の方法は、リストに含まれる/含まれないを、2進数の0/1で表現する方式である。しかし、2進数であれば、unsigned int で 32要素、unsigned long long int で 64 要素が上限となってしまう。 (32bitコンピュータ,gccの場合)
しかし、リスト構造であれば、リストの要素として扱うことで、要素件数は自由に扱える。また、今までの授業で説明してきた cons() などを使って表現すれば、簡単なプログラムでリストの処理が記述できる。
// 先週までに説明してきたリスト構造と補助関数 struct List { int data ; struct List* next ; } ; struct List* cons( int x , struct List* n ) { struct List* ans ; ans = (struct List*)malloc( sizeof( struct List ) ) ; if ( ans != NULL ) { ans->data = x ; ans->next = n ; } return ans ; } void print( struct List* p ) { for( ; p != NULL ; p = p->next ) { printf( "%d " , p->data ) ; } printf( "\n" ) ; } int find( struct List* p , int key ) { for( ; p != NULL ; p = p->next ) if ( p->data == key ) return 1 ; return 0 ; }
例えば、積集合(a ∩ b)を求めるのであれば、リストa の各要素が、リストb の中に含まれるか find 関数でチェックし、 両方に含まれたものだけを、ans に加えていく…という考えでプログラムを作ると以下のようになる。
// 集合積の計算 struct List* set_prod( struct List* a , struct List* b ) { struct List* ans = NULL ; for( ; a != NULL ; a = a->next ) { // aの要素がbにも含まれていたら、ansに加える if ( find( b , a->data ) ) ans = cons( a->data , ans ) ; } return ans ; } void main() { struct List* a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List* b = cons( 2, cons( 4, cons( 6, NULL ) ) ) ; struct List* c = cons( 4, cons( 6, cons( 9, NULL ) ) ) ; print( set_prod( a , b ) ) ; print( set_prod( b , c ) ) ; }
例題として、和集合、差集合などを考えてみよう。
リストの共有と削除の問題
リスト処理では、mallocを使うが、メモリリークをさせないためには、使用後のリストの廃棄は重要である。リストの全要素を捨てる処理であれば、以下のようになるであろう。
void list_free( struct List* p ) { while( p != NULL ) { struct List* d = p ; p = p->next ; free( d ) ; // 順序に注意 } }
一方、前説明の和集合(a ∪ b)のプログラムを以下のように作った場合、list_freeの処理は問題となる。
// 集合和 struct List* set_union( struct List*a, struct List*b ) { struct List* ans = b ; for( ; a != NULL ; a = a->next ) if ( !find( b , a->data ) ) ans = cons( a->data , ans ) ; return ans ; } void main() { struct List*a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List*b = cons( 2, cons( 3, cons( 4, NULL ) ) ) ; struct List*c = set_union( a , b ) ; // a,b,cを使った処理 // 処理が終わったので、a,b,cを捨てる list_free( a ) ; list_free( b ) ; list_free( c ) ; // c = { 1 , (bのリスト) } // (b)の部分は先のlist_free(b)で解放済み }
このような、リストb,リストcで共有されている部分があると、データの廃棄処理をどのように記述すべきなのか、問題となる。
これらの解決方法としては、(1) set_union() の最初で、ans=b となっている部分を別にコピーしておく、(2) 参照カウンタ法を用いる、(3) ガベージコレクタのある言語を用いる…などがある。(2),(3)は後期授業で改めて解説を行う。
// 同じ要素を含む、新しいリストを作る struct List* copy( struct List*p ) { struct List*ans = NULL ; for( ; p != NULL ; p = p->next ) ans = cons( p->data , ans ) ; return ans ; } struct List* set_union( struct List*a, struct List* b ) { struct List* ans = copy( b ) ; // この後は自分で考えよう。 }
理解確認
- 2進数を用いた集合処理は、どのように行うか?
- リスト構造を用いた集合処理は、どのように行うか?
- 積集合(A ∩ B)、和集合(A ∪ B)、差集合(A – B) の処理を記述せよ。
集合とリスト処理
リストを用いた待ち行列の補足
# リストによる待ち行列を早速に創造工学演習で応用した人からの質問より…
以前に説明したリストを用いた待ち行列(queue)において、時間的都合から詳しく説明できなかった点の注意点を説明する。
待ち行列の説明では、get() の処理を以下のように示していた。しかし、このままでは、待ち行列が1件の状態で、以下のような get() を実行するとポインタが以下のような図に示される状態となり、tail ポインタがおかしい状態となる。
struct List* queue = NULL ; struct List** tail = &queue ; // 待ち行列の先頭から取り出す。 int get() { struct List* d = queue ; int ans = d->data ; queue = queue->next ; free( d ) ; }
このため、待ち行列内のデータ件数が 0 件になる時だけ、tail ポインタが正しくなるような特別処理を加える必要がある。こういった特別処理は、以後の授業で説明する双方向リスト(deque:double-ended queue)などでは、プログラムを複雑化させてしまうので、別途「番兵」というテクニックが使われる。
リスト処理による積集合
前述の方法は、リストに含まれる/含まれないを、2進数の0/1で表現する方式である。しかし、2進数であれば、unsigned int で 32要素、unsigned long long int で 64 要素が上限となってしまう。 (32bitコンピュータ,gccの場合)
しかし、リスト構造であれば、リストの要素として扱うことで、要素件数は自由に扱える。また、今までの授業で説明してきた cons() などを使って表現すれば、簡単なプログラムでリストの処理が記述できる。
// 先週までに説明してきたリスト構造と補助関数 struct List { int data ; struct List* next ; } ; // リストの入れ物を1つ作る struct List* cons( int x , struct List* n ) { struct List* ans ; ans = (struct List*)malloc( sizeof( struct List ) ) ; if ( ans != NULL ) { ans->data = x ; ans->next = n ; } return ans ; } // リストを表示 void print( struct List* p ) { for( ; p != NULL ; p = p->next ) { printf( "%d " , p->data ) ; } printf( "\n" ) ; } // リストの中に指定要素があるか判定(有れば1,無ければ0) int find( struct List* p , int key ) { for( ; p != NULL ; p = p->next ) if ( p->data == key ) return 1 ; return 0 ; }
例えば、積集合(a ∩ b)を求めるのであれば、リストa の各要素が、リストb の中に含まれるか find 関数でチェックし、 両方に含まれたものだけを、ans に加えていく…という考えでプログラムを作ると以下のようになる。
// 集合積の計算 struct List* set_prod( struct List* a , struct List* b ) { struct List* ans = NULL ; for( ; a != NULL ; a = a->next ) { // aの要素がbにも含まれていたら、ansに加える if ( find( b , a->data ) ) ans = cons( a->data , ans ) ; } return ans ; } void main() { struct List* a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List* b = cons( 2, cons( 4, cons( 6, NULL ) ) ) ; struct List* c = cons( 4, cons( 6, cons( 9, NULL ) ) ) ; print( set_prod( a , b ) ) ; print( set_prod( b , c ) ) ; }
例題として、和集合、差集合などを考えてみよう。
リストの共有と削除の問題
リスト処理では、mallocを使うが、メモリリークをさせないためには、使用後のリストの廃棄は重要である。リストの全要素を捨てる処理であれば、以下のようになるであろう。
void list_free( struct List* p ) { while( p != NULL ) { struct List* d = p ; p = p->next ; free( d ) ; // 順序に注意 } }
一方、前説明の和集合(a ∪ b)のプログラムを以下のように作った場合、list_freeの処理は問題となる。
// 集合和 struct List* set_union( struct List*a, struct List*b ) { struct List* ans = b ; for( ; a != NULL ; a = a->next ) if ( !find( b , a->data ) ) ans = cons( a->data , ans ) ; return ans ; } void main() { struct List*a = cons( 1, cons( 2, cons( 3, NULL ) ) ) ; struct List*b = cons( 2, cons( 3, cons( 4, NULL ) ) ) ; struct List*c = set_union( a , b ) ; // a,b,cを使った処理 // 処理が終わったので、a,b,cを捨てる list_free( a ) ; list_free( b ) ; list_free( c ) ; // c = { 1 , (bのリスト) } // (b)の部分は先のlist_free(b)で解放済み }
このような、リストb,リストcで共有されている部分があると、データの廃棄処理をどのように記述すべきなのか、問題となる。
これらの解決方法としては、(1) set_union() の最初で、ans=b となっている部分を別にコピーしておく、(2) 参照カウンタ法を用いる、(3) ガベージコレクタのある言語を用いる…などがある。(2),(3)は後期授業で改めて解説を行う。
// 同じ要素を含む、新しいリストを作る struct List* copy( struct List*p ) { struct List*ans = NULL ; for( ; p != NULL ; p = p->next ) ans = cons( p->data , ans ) ; return ans ; } struct List* set_union( struct List*a, struct List* b ) { struct List* ans = copy( b ) ; // この後は自分で考えよう。 }
理解確認
- 2進数を用いた集合処理は、どのように行うか?
- リスト構造を用いた集合処理は、どのように行うか?
- 積集合(A ∩ B)、和集合(A ∪ B)、差集合(A – B) の処理を記述せよ。
集合とビット演算
リスト構造は、必要に応じてメモリを確保するデータ構造であり、データ件数に依存しないプログラム が記述できる。その応用として、集合処理を考えてみる。
bit演算子
2進数を使った処理をする時には、bit演算子を用いる。
bit AND | 3 & 5 0011)2 & 0101)2= 0001)2 |
論理積演算子 if ( a == 1 && b == 2 ) … |
bit OR | 3 | 5 0011)2 | 0101)2= 0111)2 |
論理和演算子 if ( a == 1 || b == 2 ) … |
bit NOT | ~5 ~ 00..00,0101)2= 11..11,1010)2 |
論理否定演算子 if ( !a == 1 ) … |
bit EXOR | 3 ^ 5 0011)2 ^ 0101)2= 0110)2 |
|
bit 左シフト | 3 << 2 0011)2 << 2 = 001100)2 |
3 * 22 と同じ |
bit 右シフト | 12 >> 2 1100)2 >> 2 = 11)2 |
12 / 22 と同じ |
#include <stdio.h> int main() { // bit演算子と論理演算子 printf( "%d¥n" , 12 & 5 ) ; // 1100 & 0101 = 0100 よって 4が表示される printf( "%d¥n" , 12 && 0 ) ; // 0が表示 論理演算子とbit演算子の違い printf( "%d¥n" , 12 | 5 ) ; // 1100 | 0101 = 1101 よって 13が表示される printf( "%d¥n" , 12 || 0 ) ; // 1が表示 // シフト演算子 printf( "%d¥n" , 3 << 2 ) ; // 12が表示 printf( "%d¥n" , 12 >> 2 ) ; // 3が表示 // おまけ printf( "%d¥n" , ~(unsigned)12 + 1 ) ; // 2の補数(NOT 12 + 1) = -12 return 0 ; }
2進数を用いた集合計算
リストによる集合の前に、もっと簡単な集合処理を考える。
最も簡単な方法は、要素に含まれる=1 か 含まれない=0 を配列に覚える方法であろう。数字Nが集合に含まれる場合は、配列[N]に1を覚えるものとする。この方法で積集合などを記述した例を以下に示す。ただし、演習課題として穴埋めを含むので注意。
しかし、上述のプログラムでは、要素に含まれる/含まれないという1bitの情報を、整数型で保存しているためメモリの無駄である。
データ件数の上限が少ない場合には、「2進数の列」の各ビットを集合の各要素に対応づけし、要素の有無を0/1で表現する。この方法を用いるとC言語のビット演算命令で 和集合、積集合を計算できるので、処理が極めて簡単になる。
以下のプログラムは、0〜31の数字を2進数の各ビットに対応付けし、 ba = {1,2,3} , bb = {2,4,6} , bc= {4,6,9} を要素として持つ集合で、ba ∩ bb , bb ∩ bc , ba ∪ bc の計算を行う例である。
// 符号なし整数を uint_t とする。 typedef unsigned int uint_t ; // uint_tのbit数 #define UINT_BITS (sizeof( uint_t ) * 8) // 集合の内容を表示 void bit_print( uint_t x ) { for( int i = 0 ; i < UINT_BITS ; i++ ) if ( (x & (1 << i)) != 0 ) printf( "%d " , i ) ; printf( "\n" ) ; } void main() { // 98,7654,3210 // ba = {1,2,3} = 00,0000,1110 uint_t ba = (1<<1) | (1<<2) | (1<<3) ; // bb = {2,4,6} = 00,0101,0100 uint_t bb = (1<<2) | (1<<4) | (1<<6) ; // bc = {4,6,9} = 10,0101,0000 uint_t bc = (1<<4) | (1<<6) | (1<<9) ; bit_print( ba & bb ) ; // ba ∩ bb = {2} bit_print( bb & bc ) ; // bb ∩ bc = {4,6} bit_print( ba | bc ) ; // ba ∪ bc = {1,2,3,4,6,9} }
このような、2進数を用いた処理で有名なものとして、エラトステネスのふるいによる素数探索がある。このアルゴリズムでは、各bitを整数に対応付けし、素数で無いと判断した2進数の各桁に1の目印をつけていく方式である。
uint_t prime = 0 ; // 初期値=すべての数は素数とする。 void filter() { for( int i = 2 ; i < UINT_BITS ; i++ ) { if ( (prime & (1 << i)) == 0 ) { // iの倍数には、非素数の目印(1)をつける for( int j = 2*i ; j < UINT_BITS ; j += i ) prime |= (1 << j) ; } } for( int i = 2 ; i < UINT_BITS ; i++ ) { // 目印のついていない数は素数 if ( (prime & (1 << i)) == 0 ) printf( "%d\n" , i ) ; } }
ミニ課題
最初に示した、配列による集合の set-array.cxx で、配列による和集合、エラトステネスのふるいの処理の一部を記述していない。未完成の部分を埋めて、動作を確認せよ。
SQLで集約関数と集合計算
基本的なSQL命令のための集約関数などの追加を説明のうえ、演習課題に取り組んでもらう。
来週も後半を演習時間とする予定。
特殊な条件演算子
WHERE 節の中で使える特殊な条件演算子を紹介する。
... AND ... WHERE S.業者番号 <= 100 AND S.業者番号 >= 200 ; ... OR ... WHERE S.業者番号 >= 100 OR S.業者番号 <= 200 ; NOT ... WHERE NOT S.業者番号 >= 100 ; ... IN ... WHERE S.業者番号 IN ( 'S1' , 'S4' ) ; ... BETWEEN A AND B WHERE S.優良度 BETWEEN 50 AND 100 ; ... LIKE ... WHERE S.業者名 LIKE 'A_C社' ; _ は任意の1文字 ABC社 ADC社 WHERE S.業者名 LIKE 'A%社' ; % は任意の0~N文字 A社, AA社 ABC社 ... IS NULL WHERE S.業者名 IS NULL WHERE S.業者名 IS NOT NULL
集約関数
集約関数は、SQL の SELECT の射影部分で使える関数で、出力対象となった項目に対して、COUNT(),SUM(),AVG()といった計算を行うもの。
COUNT() - 項目の数 SUM() - 項目の合計 AVG() - 項目の平均 MAX() - 項目の最大値 MIN() - 項目の最低値 SELECT COUNT(S.業者番号) FROM S WHERE S.優良度 > 20 ;
- 実験環境で集約関数(学内のみ)
集合計算
複数の SQL の結果に対し、集合和, 集合積, 集合差などの処理を行う。
... UNION ... 集合和 ... EXPECT ... 集合差 ... INTERSECT ... 集合積 SELECT S.業者名 FROM S WHERE S.所在 = '福井' UNION SELECT S.業者名 FROM S WHERE S.所在 = '東京'
- 実験環境で集合計算(学内のみ)
演習課題
SQLの実験環境を使って、自分で考えたSQLの命令を2つ実行すること。実行した命令とその意味を説明し、出力された結果と一致することを確認すること。
さらにこの実行と同じ結果が出力される様なC言語のプログラムを作成し、おなじく結果を確認すること。
考察として、SQLで書いたプログラムとCで書いたプログラムの違いや便利な点や、Cでのプログラムの速度を早めるにはどう書くと良いかを比較検討すること。
SQLで集約関数と集合計算
特殊な条件演算子
WHERE 節の中で使える特殊な条件演算子を紹介する。
... IN ... WHERE S.業者番号 IN ( 'S1' , 'S4' ) ; ... BETWEEN A AND B WHERE S.優良度 BETWEEN 50 AND 100 ; ... LIKE ... WHERE S.業者名 LIKE 'A_C社' ; _ は任意の1文字 ABC社 ADC社 WHERE S.業者名 LIKE 'A%社' ; % は任意の0~N文字 A社, AA社 ABC社 ... IS NULL WHERE S.業者名 IS NULL
集約関数
集約関数は、SQL の SELECT の射影部分で使える関数で、出力対象となった項目に対して、COUNT(),SUM(),AVG()といった計算を行うもの。
COUNT() - 項目の数 SUM() - 項目の合計 AVG() - 項目の平均 MAX() - 項目の最大値 MIN() - 項目の最低値 SELECT COUNT(SG.業者番号) FROM SG WHERE SG.優良度 > 100 ;
集合計算
複数の SQL の結果に対し、集合和, 集合積, 集合差などの処理を行う。
... UNION ... 集合和 ... EXPECT ... 集合差 ... INTERSECT ... 集合積 SELECT S.業者名 FROM S WHERE S.所在 = '福井' UNION SELECT S.業者名 FROM S WHERE S.所在 = '東京'