ホーム » 「派生」タグがついた投稿

タグアーカイブ: 派生

2023年2月
 1234
567891011
12131415161718
19202122232425
262728  

最新の投稿(電子情報)

アーカイブ

カテゴリー

オブジェクト指向プログラミング(ソフトウェア工学)

オブジェクト指向プログラミングは、最近の多くのプログラム言語で取り入れられている機能。

今回は、構造化プログラミングオブジェクト指向(クラス,メソッド)、コンストラクタ派生継承仮想関数の概念を紹介する。

オブジェクト指向プログラミングの歴史

最初のプログラム言語のFortran(科学技術計算向け言語)の頃は、処理を記述するだけだったけど、 COBOL(商用計算向け言語)ができた頃には、データをひとまとめで扱う「構造体」(C言語ならstruct {…}の考えができた。(データの構造化)

// C言語の構造体 // データの構造化
struct Person { // 1人分のデータ構造をPersonとする
   char name[ 20 ] ;             // 名前
   int  b_year, b_month, b_day ; // 誕生日
} ;

一方、初期のFortranでは、プログラムの処理順序は、if 文と goto 文で組み合わせて書くこと多く、処理がわかりにくかった。その後のALGOLの頃には、処理をブロック化して扱うスタイル(C言語なら{ 文 … }の複文で 記述する方法ができてきた。(処理の構造化)

      // ブロックの考えがない時代の雰囲気をC言語で表すと
      int i = 0 ;
LOOP: if ( i >= 10 ) goto EXIT ;
         if ( i % 2 != 0 ) goto NEXT ;
            printf( "%d " , i ) ;
NEXT:    i++ ;
      goto LOOP ;   // 処理の範囲を字下げ(インデント)で強調
EXIT:
--------------------------------------------------- 
      // C 言語で書けば
      int i ;
      for( i = 0 ; i < 10 ; i++ ) { // 処理の構造化
         if ( i % 2 == 0 ) {
            printf( "%d¥n" , i ) ;
         }
      }
---------------------------------------------------
      ! 構造化文法のFORTRANで書くと
      integer i
      do i = 0 , 9
        if ( mod( i , 2 ) == 0 ) then
          print * , i
        end if
      end do

このデータの構造化・処理の構造化により、プログラムの分かりやすさは向上し、このデータと処理をブロック化した書き方は「構造化プログラミング(Structured Programming)」 と呼ばれる。

この後、様々なプログラム言語が開発され、C言語などもできてきた。 一方で、シミュレーションのプログラム開発(例simula)では、 シミュレーション対象(object)に対して、命令するスタイルの書き方が生まれ、 データに対して命令するという点で、擬人法のようなイメージで直感的にも分かりやすかった。 これがオブジェクト指向プログラミング(Object Oriented Programming)の始まりとなる。略記するときは OOP などと書くことが多い。

この考え方を導入した言語の1つが Smalltalk であり、この環境では、プログラムのエディタも Smalltalk で記述したりして、オブジェクト指向がGUIのプログラムと親和性が良いことから、この考え方は多くのプログラム言語へと取り入れられていく。

C言語にこのオブジェクト指向を取り入れ C++ が開発される。さらに、この文法をベースとした Java などが開発されている。最近の新しい言語では、どれもオブジェクト指向の考えが使われている。

クラスの導入(構造体でオブジェクト指向もどき)

例えば、名前と年齢の構造体で処理を記述する場合、 以下の様な記載を行うことで、データ設計者データ利用者で分けて 仕事ができる。

// この部分はデータ構造の設計者が書く
// データ構造を記述
struct Person {
   char name[10] ;
   int  age ;
} ;
// データに対する処理を記述
void setPerson( struct Person* p , char s[] , int a ) {
   // ポインタの参照で表記
   strcpy( p->name , s ) ;
   p->age = a ;
}
void printPerson( struct Person* p ) {
   printf( "%s %d¥n" , p->name , p->age ) ;
}
// -------------------------------------------
// この部分は、データ利用者が書く
int main() {
   // Personの中身を知らなくてもいいから配列を定義(データ隠蔽)
   struct Person saitoh ;
   setPerson( &saitoh , "saitoh" , 55 ) ;

   struct Person table[ 10 ] ; // 初期化は記述を省略
   for( int i = 0 ; i < 10 ; i++ ) {
      // 出力する...という雰囲気で書ける(手続き隠蔽)
      printPerson( &table[i] ) ;
   }
   return 0 ;
}

このプログラムの書き方では、mainの中を読むだけもで、 データ初期化とデータ出力を行うことはある程度理解できる。 この時、データ構造の中身を知らなくてもプログラムが理解でき、 データ実装者はプログラムを記述できる。これをデータ構造の隠蔽化という。 一方、setPerson()や、printPerson()という関数の中身についても、 初期化・出力の方法をどうするのか知らなくても、 関数名から動作は推測できプログラムも書ける。 これを手続きの隠蔽化という。

C++のクラスで表現

上記のプログラムをそのままC++に書き直すと以下のようになる。特徴として 構造体を進化させた class 宣言の中に、データ構造とデータ構造を使う関数をまとめて記述する。

#include <stdio.h>
#include <string.h>

// この部分はクラス設計者が書く
class Person {
private: // ■ クラス外からアクセスできない部分
   // データ構造を記述
   char name[10] ; // メンバーの宣言
   int  age ;
public: // ■ クラス外から使える部分
   // データに対する処理を記述
   void set( char s[] , int a ) { // ■ メソッドの宣言
      // pのように対象のオブジェクトを明記する必要はない。
      strcpy( name , s ) ;
      age = a ;
   }
   void print() {
      printf( "%s %d¥n" , name , age ) ;
   }
} ; // ← 注意ここのセミコロンを書き忘れないこと。

// この部分はクラス利用者が書く
int main() {
   Person saitoh ;
   saitoh.set( "saitoh" , 55 ) ;
   saitoh.print() ;

   // 文法エラーの例
   printf( "%d¥n" , saitoh.age ) ; // ■ age は private なので参照できない。
   return 0 ;
}

用語の解説:C++のプログラムでは、データ構造データの処理を、並行しながら記述する。 データ構造に対する処理は、メソッド(method)と呼ばれる。 データ構造とメソッドを同時に記載したものは、クラス(class)と呼ぶ。 そのclassに対し、具体的な値や記憶域が割り当てられたものをオブジェクト(object)とかインスタンス(instance)と呼ぶ。

コンストラクタ

データ構造を扱ううえで、データの初期化や廃棄処理は重要となるが、書き忘れをすることも多い。そこで、C++ ではコンストラクタで初期化を簡単に書ける。

// コンストラクタを使って書く
class Person {
private:
   char name[10] ; // メンバーの宣言
   int  age ;
public:
   Person( char s[] , int a ) { // ■ コンストラクタ
      strcpy( name , s ) ;
      age = a ;
   }
   void print() {
      printf( "%s %d¥n" , name , age ) ;
   }
} ;
int main() {
   Person saitoh( "saitoh" , 57 ) ;  // ■ コンストラクタで宣言&初期化
   return 0 ;
}

派生と継承

オブジェクト指向では、元となったデータ構造(class ? struct ?)を拡張した時の記述が便利。例えば、前述の Person に住所も覚えたかったとしたら どう書くだろうか?

// オブジェクト指向を使わずに記述
// Personを要素として持つ PersonAddr を定義
struct PersonAddr {
   struct Person person ;
   char          addr[ 20 ] ;
} ;
// PersonAddr のメソッド
void setPersonAddr( struct PersonAddr* p , char nm[] , int ag , char ad[] ) {
   setPerson( p->person , nm , ag ) ;
   strcpy( p->addr , ad ) ;
}
void printPersonAddr( struct PersonAddr* p ) {
   printPerson( p->person ) ;
   printf( "%s" , p->addr ) ;
   return 0 ;
}

オブジェクト指向では、こういった場合には、Person を拡張した PersonAddr を定義する。この時、元となるクラス(Person)は基底クラス(あるいは親クラス)拡張したクラス(PersonAddr)は派生クラス(あるいは子クラス)と呼ぶ。

// C++ 流に記述
class PersonAddr : public Person { // ■ Personから派生したPersonAddr
private:        // ~~~~~~~~~~~~~派生
   char  addr[ 20 ] ;
public:
   PersonAddr( char nm[] , int ag , char ad[] )
     : Person( nm , ag ) {         // ■ 基底クラスのコンストラクタで初期化
       strcpy( addr , ad ) ;       // ■ 追加部分の初期化
   }
} ;
int main() {
   Person     tohru( "tohru" , 57 ) ;
   PersonAddr saitoh( "saitoh" , 45 , "Fukui" ) ;
   tohru.print() ;   // tohru 57
   saitoh.print() ;  // saitoh 45 ■ 継承を使って表示
   return 0 ;
}

この例では、saitoh は PersonAddr であり、それを表示するための PersonAddr::print() は定義されていないが、saitoh.print() を実行すると、基底クラスのメソッド Person::print() を使ってくれる。このように基底クラスのメソッドを流用してくれる機能継承と呼ぶ。

仮想関数

前述の継承のプログラムでは、PersonAddr 専用の print() を定義してもいい。また基底クラスと派生クラスが混在する配列を作ることもできる。しかし、以下のようなプログラムでは問題が発生する。

class PersonAddr : public Person {
private:
   char  addr[ 20 ] ;
public:
   PersonAddr( char nm[] , int ag , char ad[] )
     : Person( nm , ag ) {
       strcpy( addr , ad ) ;
   }
   void print() {  // ■ PersonAddr 専用の print() を宣言してもいい
      Person::print() ;  // 基底クラス Person の print() を使う
      printf( "%s" , addr ) ;
   }
} ;
int main() {
   Person     tohru( "tohru" , 57 ) ;
   PersonAddr saitoh( "saitoh" , 45 , "Fukui" ) ;

   Person*    family[] = {  // tohru と saitoh のポインタ配列
      &tohru , &saitoh      // &saitoh は Person* に降格されている
   } ;
   tohru.print() ;   // tohru 57
   saitoh.print() ;  // saitoh 45 Fukui
   for( int i = 0 ; i < 2 ; i++ )  // tohru 57
      family[ i ]->print() ;       // ■ "saitoh 45"としか表示してくれない

   return 0 ;
}

family[] のデータを全部表示したいのなら、”tohru 57, saitoh 45 Fukui” と表示されてほしい。
こういった場合に、データのclassに応じて適切なメソッドを呼び出すメカニズムとして仮想関数がある。

class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( char nm[] , int ag ) {
      strcpy( name , nm ) ;
      age = ag ;
   }
   virtual void print() {  // ■ ここに virtual が追加された|仮想関数
      printf( "%s %d" , name , age ) ;
   }
} ;
class PersonAddr : public Person {
private:
   char  addr[ 20 ] ;
public:
   PersonAddr( char nm[] , int ag , char ad[] )
     : Person( nm , ag ) {
       strcpy( addr , ad ) ;
   }
   virtual void print() { // ■ ここに virtual が追加された|仮想関数
      Person::print() ;
      printf( "%s" , addr ) ;
   }
} ;
int main() {
   Person     tohru( "tohru" , 57 ) ;
   PersonAddr saitoh( "saitoh" , 45 , "Fukui" ) ;

   Person*    family[] = {  // tohru と saitoh のポインタ配列
      &tohru , &saitoh
   } ;
   for( int i = 0 ; i < 2 ; i++ )  // tohru 57
      family[ i ]->print() ;       // ■ saitoh 45 Fukui と表示
                                   // print は 仮想関数がそれぞれ定義してあるので
                                   // tohru は、"tohru 57"と表示されるし
   return 0 ;                      // saitoh は、"saitoh 45 Fukui"と表示される。
}

このプログラムでは、Person::print() と PersonAddr::print() がそれぞれ仮想関数で定義されているので、tohru, saitoh の各インスタンスには、型情報が埋め込まれている。このため family[0]->print() では “tohru 57” が表示されるし、family[1]->print() では “saitoh 45 Fukui” が表示される。

多態性・ポリモーフィズム

このように、派生クラスと仮想関数使ってプログラムを書くと、その派生クラスに応じた処理を呼び出すことができる。このように共通の基底クラスから様々な派生クラスを作りながらプログラムを書き、その派生クラス毎にそのデータに応じた処理を実行させることができる。インスタンスがデータ種別に応じた動きをすることは多態性(ポリモーフィズム)と呼ばれる。

派生と継承と仮想関数

前回の派生と継承のイメージを改めて記載する。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ; 
   saitoh.print() ; // 表示 t-saitoh 55
   yama.print() ;   // 表示 yamada 21
                    //      - ES 1
   nomu.print() ;   // 表示 nomura 22
   return 0 ;       //      - PS 2
}

このような処理でのデータ構造は、次のようなイメージで表される。

派生クラスでの問題提起

基底クラスのオブジェクトと、派生クラスのオブジェクトを混在してプログラムを記述したらどうなるであろうか?
上記の例では、Person オブジェクトと、Student オブジェクトがあったが、それをひとまとめで扱いたいこともある。

以下の処理では、Person型の saitoh と、Student 型の yama, nomu を、一つの table[] にまとめている。

int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      table[ i ]->print() ;
   }
   return 0 ;
}

C++では、Personへのポインタの配列に代入する時、Student型ポインタは、その基底クラスへのポインタとしても扱える。ただし、このように記述すると、table[] には、Person クラスのデータして扱われる。

このため、このプログラムを動かすと、以下のように、名前と年齢だけが3人分表示される。

t-saitoh 55
yamada   21
nomura   22

派生した型に応じた処理

上記のプログラムでは、 Person* table[] に、Person*型,Student*型を混在して保存をした。しかし、Person*として呼び出されると、yama のデータを表示しても、所属・学年は表示されない。上記のプログラムで、所属と名前を表示することはできないのだろうか?

// 混在したPersonを表示
for( int i = 0 ; i < 3 ; i++ )
   table[i]->print() ;
// Student は、所属と名前を表示して欲しい
t-saitoh 55
yamada 21
- ES 1
nomura 22
- PS 2

上記のプログラムでは、Person型では、後でStudent型と区別ができないと困るので、Person型に、Person型(=0)なのか、Student型(=1)なのか区別するための type という型の識別番号を追加し、type=1ならば、Student型として扱うようにしてみた。

// 基底クラス
class Person {
private:
   int  type ; // 型識別情報
   char name[ 20 ] ;
   int  age ;
public:
   Person( int tp , const char s[] , int x )
     : type( tp ) , age( x ) {
      strcpy( name , s ) ;
   }
   int type_person() { return type ; }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( int tp , const char s[] , int x ,
            const char d[] , int g )
            : Person( tp , s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
int main() {
   // type=0 は Person 型、type=1は Student 型
   Person saitoh( 0 , "t-saitoh" , 55 ) ;
   Student yama( 1 , "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( 1 , "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      switch( table[i]->type_person() ) {
      case 0 :
         table[i]->print() ;
         break ;
      case 1 :
         // 強制的にStudent*型として print() を呼び出す。
         //   最近のC++なら、(static_cast<Student*>(table[i]))->>print() ;
         ((Student*)table[i])->print() ;
         break ;
      }
   }
   return 0 ;
}

しかし、このプログラムでは、プログラマーがこのデータは、Personなので type=0 で初期化とか、Studentなので type=1 で初期化といったことを記述する必要がある。

また、関数を呼び出す際に、型情報(type)に応じて、その型にふさわしい処理を呼び出すための switch 文が必要になる。

もし、派生したクラスの種類がいくつもあるのなら、(1)型情報の代入は注意深く書かないとバグの元になるし、(2)型に応じた分岐処理は巨大なものになるだろう。実際、オブジェクト指向プログラミングが普及する前の初期の GUI プログラミングでは、巨大な switch 文が問題となっていた。巨大な switch 文は、選択肢だけの if else-if else-if が並ぶと処理効率も悪い。

仮想関数

上記の、型情報の埋め込みと巨大なswitch文の問題の解決策として、C++では仮想関数(Virtual Function)が使える。

型に応じて異なる処理をしたい関数があったら、その関数の前に virtual と書くだけで良い。このような関数を、仮想関数と呼ぶ。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   virtual void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   virtual void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
int main() {
   // type=0 は Person 型、type=1は Student 型
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      table[i]->print() ;
   }
   return 0 ;
}

クラスの中に仮想関数が使われると、C++ では、プログラム上で見えないが、何らかの型情報をオブジェクトの中に保存してくれる。

また、仮想関数が呼び出されると、その型情報を元に、ふさわしい関数を自動的に呼び出してくれる。このため、プログラムも table[i]->print() といった極めて簡単に記述できるようになる。

関数ポインタ

仮想関数の仕組みを実現するためには、関数ポインタが使われる。

以下の例では、返り値=int,引数(int,int)の関数( int(*)(int,int) )へのポインタfpに、最初はaddが代入され、(*fp)(3,4) により、7が求まる。

int add( int a , int b ) {
   return a + b ;
}
int mul( int a , int b ) {
   return a * b ;
}
int main() {
   int (*fp)( int , int ) ;
   fp = add ;
   printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3+4=7
   fp = mul ;
   printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3*4=12

   int (*ftable[2])( int , int ) = {
      add , mul ,
   } ;
   for( int i = 0 ; i < 2 ; i++ )
      printf( "%d\n" , (*ftable[i])( 3 , 4 ) ) ;
   return 0 ;
}

仮想関数を使うクラスが宣言されると、一般的にそのコンストラクタでは、各クラス毎の仮想関数へのポインタのテーブルが型情報として保存されるのが一般的。仮想関数の呼び出しでは、仮想関数へのポインタを使って処理を呼び出す。このため効率よく仮想関数を動かすことができる。

仮想関数の実装方法

仮想関数の一般的な実装方法としては、仮想関数を持つオブジェクトには型情報として仮想関数へのポインタテーブルへのポインタを保存する。この場合、仮想関数の呼び出しは、object->table[n]( arg… ) のような処理が行われる。

派生と継承

隠ぺい化の次のステップとして、派生・継承を説明する。オブジェクト指向プログラミングでは、一番基本となるデータ構造を宣言し、その基本構造に様々な機能を追加した派生クラスを記述することでプログラムを作成する。今回は、その派生を理解するためにC言語で発生する問題点を考える。

説明が中途半端になるので、講義後半は先週のレポート課題の時間とする。

派生を使わずに書くと…

元となるデータ構造(例えばPersonが名前と年齢)でプログラムを作っていて、 途中でその特殊パターンとして、所属と学年を加えた学生(Student)という データ構造を作るとする。

// 元となる構造体(Person) / 基底クラス
struct Person {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
} ;
// 初期化関数
void set_Person( struct Person* p ,
                 char s[] , int x ) {
   strcpy( p->name , s ) ;
   p->age = x ;
}
// 表示関数
void print_Person( struct Person* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;
}
int main() {
   struct Person saitoh ;
   set_Person( &saitoh , "t-saitoh" , 50 ) ;
   print_Person( &saitoh ) ;
   return 0 ;
}

パターン1(そのまんま…)

上記のPersonに、所属と学年を加えるのであれば、以下の方法がある。 しかし以下パターン1は、要素名がname,ageという共通な部分があるようにみえるが、 プログラム上は、PersonとPersonStudent1は、まるっきり関係のない別の型にすぎない。

このため、元データと共通部分があっても、同じ処理を改めて書き直しになる。(プログラマーの手間が減らせない)

// 元のデータに追加要素(パターン1)
struct PersonStudent1 {
   // Personと同じ部分
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢

   // 追加部分
   char dep[ 20 ] ;  // 所属
   int  grade ;      // 学年
} ;
void set_PersonStudent1( struct PersonStudent1* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // set_Personと同じ処理を書いている。
   strcpy( p->name , s ) ;
   p->age = x ;

   // 追加された処理
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

// 名前と年齢 / 所属と学年を表示
void print_PersonStudent1( struct PersonStudent1* p ) {
   // print_Personと同じ処理を書いている。
   printf( "%s %d\n" , p->name , p->age ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ;
}

int main() {
   struct PersonStudent1 yama1 ;
   set_PersonStudent1( &yama1 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent1( &yama1 ) ;
   return 0 ;
}

パターン2(元データの処理を少し使って…)

パターン1では、機能が追加された新しいデータ構造のために、同じような処理を改めて書くことになりプログラムの記述量を減らせない。面倒なので、 元データ用の関数をうまく使うように書いてみる。

// 元のデータに追加要素(パターン2)
struct PersonStudent2 {
   // 元のデータPerson
   struct Person person ;

   // 追加部分
   char          dep[ 20 ] ;
   int           grade ;
} ;

void set_PersonStudent2( struct PersonStudent2* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // Personの関数を部分的に使う
   set_Person( &(p->person) , s , x ) ;

   // 追加分はしかたない
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

void print_PersonStudent2( struct PersonStudent2* p ) {
   // Personの関数を使う。
   print_Person( &p->person ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ; 
}

int main() {
   struct PersonStudent2 yama2 ;
   set_PersonStudent2( &yama2 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent2( &yama2 ) ;
   return 0 ;
}

このパターン2であれば、元データ Person の処理をうまく使っているので、 プログラムの記述量を減らすことはできるようになった。

しかし、print_PersonStudent2() のような処理は、名前と年齢だけ表示すればいいという場合、元データ構造が同じなのに、 PersonStudent2 用のプログラムをいちいち記述するのは面倒ではないか?

そこで、元データの処理を拡張し、処理の流用ができないであろうか?

基底クラスから派生クラスを作る

オブジェクト指向では、元データ(基底クラス)に新たな要素を加えたクラス(派生クラス)を 作ることを「派生」と呼ぶ。派生クラスを定義するときは、クラス名の後ろに、 「:」,「public/protected/private」, 基底クラス名を書く。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   // 追加部分
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
     : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
} ;

int main() {
   Person saitoh( "t-saitoh" , 50 ) ;
   saitoh.print() ;
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;  // "yama 22"が表示される
   return 0 ;
}

ここで注目すべき点は、main()の中で、Studentクラス”yama”に対し、yama.print() を呼び出しているが、パターン2であれば、print_PersonStudent2()に相当するプログラムを 記述していない。 しかし、この派生を使うと Person の print() が自動的に流用することができる。 これは、基底クラスのメソッドを「継承」しているから、 このように書け、名前と年齢「yama 22」が表示される。

さらに、Student の中に、以下のような Student 専用の新しい print()を記述してもよい。

class Student ...略... {
   ...略...

   // Student クラス専用の print() 
   void print() {
      // 親クラス Person の print() を呼び出す
      Person::print() ;
      // Student クラス用の処理
      printf( "%s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   ...略...
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

この場合は、継承ではなく機能が上書き(オーバーライト)されるので、 「yama 22 / PS 2」が表示される。

派生クラスを作る際の後ろに記述した、public は、他にも protected , private を 記述できる。

public    だれもがアクセス可能。
protected であれば、派生クラスからアクセスが可能。
          派生クラスであれば、通常は protected で使うのが一般的。
private   派生クラスでもアクセス不可。

C言語で無理やりオブジェクト指向の”派生”を使う方法

オブジェクト指向の機能の無いC言語で、このような派生と継承を実装する場合には、共用体を使う以下のようなテクニックが使われていた。
unix の GUI である X11 でも共用体を用いて派生を実装していた。

// 基底クラス
struct PersonBase {     // 基底クラス
   char name[ 20 ] ;
   int  age ;
} ;

struct PersonStudent {  // 派生クラス
   struct PersonBase base ;
   char dep[ 20 ] ;
   int  grade ;
} ;
                                   //(base) //(student)
union Person {                     // name  //[name]
   struct PersonBase    base ;     // age   //[age ]
   struct PersonStudent student ;           // dep
} ;                                         // grade

void person_Print( struct Person* p ) {
   printf( "%s %d\n" , p->base.name , p->base.age ) ;   
}

int main() {
   struct PersonBase    tsaitoh = { "tsaitoh" , 55 } ;
   struct PersonStudent mitsuki = { { "mitsuki" , 21 } , "KIT" , 4 } ;
   print_Person( (struct Person*)&tsaitoh ) ;
   print_Person( (struct Person*)&mitsuki ) ;  // 無理やり print_Person を呼び出す
   return 0 ;
}

仮想関数への伏線

上記のような派生したプログラムを記述した場合、以下のようなプログラムでは何が起こるであろうか?

class Student ... {
   :
   void print() {
      Person::print() ;                    // 名前と年齢を表示
      printf( " %s %d¥n" , dep , grade ) ; // 所属と学年を表示
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   saitoh.print() ;                // t-saitoh 55 名前と年齢を表示

   Student mitsu( "mitsuki" , 20 , "KIT" ,  3 ) ;
   Student ayuka( "ayuka" ,   18 , "EI" ,   4 ) ;
   mitsu.print() ;                 // mitsuki 20 / KIT 3  名前,年齢,所属,学年を表示
   ayuka.print() ;                 // ayuka 18   / EI  4  名前,年齢,所属,学年を表示

   Person* family[] = {
      &saitoh , &mitsu , &ayuka ,  // 配列の中に、Personへのポインタと
   } ;                             // Studentへのポインタが混在している
                                   // 派生クラスのポインタは、
                                   // 基底クラスのポインタとしても扱える
   for( int i = 0 ; i < 3 ; i++ )
      family[ i ]->print() ;       // t-saitoh 55/mitsuki 20/ayuka 18
   return 0 ;                      // が表示される。 
}                                  // # "mitsuki 20/KIT 3" とか "ayuka 18/EI 4"
                                   // # が表示されてほしい?

派生と継承

隠ぺい化の次のステップとして、派生・継承を説明する。オブジェクト指向プログラミングでは、一番基本となるデータ構造を宣言し、その基本構造に様々な機能を追加した派生クラスを記述することでプログラムを作成する。今回は、その派生を理解するためにC言語で発生する問題点を考える。

説明が中途半端になるので、講義後半は先週のレポート課題の時間とする。

派生を使わずに書くと…

元となるデータ構造(例えばPersonが名前と年齢)でプログラムを作っていて、 途中でその特殊パターンとして、所属と学年を加えた学生(Student)という データ構造を作るとする。

// 元となる構造体(Person) / 基底クラス
struct Person {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
} ;
// 初期化関数
void set_Person( struct Person* p ,
                 char s[] , int x ) {
   strcpy( p->name , s ) ;
   p->age = x ;
}
// 表示関数
void print_Person( struct Person* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;
}
int main() {
   struct Person saitoh ;
   set_Person( &saitoh , "t-saitoh" , 50 ) ;
   print_Person( &saitoh ) ;
   return 0 ;
}

パターン1(そのまんま…)

上記のPersonに、所属と学年を加えるのであれば、以下の方法がある。 しかし以下パターン1は、要素名がname,ageという共通な部分があるようにみえるが、 プログラム上は、PersonとPersonStudent1は、まるっきり関係のない別の型にすぎない。

このため、元データと共通部分があっても、同じ処理を改めて書き直しになる。

// 元のデータに追加要素(パターン1)
struct PersonStudent1 {
   // Personと同じ部分
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢

   // 追加部分
   char dep[ 20 ] ;  // 所属
   int  grade ;      // 学年
} ;
void set_PersonStudent1( struct PersonStudent1* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // set_Personと同じ処理を書いている。
   strcpy( p->name , s ) ;
   p->age = x ;

   // 追加された処理
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

// 名前と年齢 / 所属と学年を表示
void print_PersonStudent1( struct PersonStudent1* p ) {
   // print_Personと同じ処理を書いている。
   printf( "%s %d\n" , p->name , p->age ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ;
}

int main() {
   struct PersonStudent1 yama1 ;
   set_PersonStudent1( &yama1 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent1( &yama1 ) ;
   return 0 ;
}

パターン2(元データの処理を少し使って…)

パターン1では、機能が追加された新しいデータ構造のために、同じような処理を改めて書くことになりプログラムの記述量を減らせない。面倒なので、 元データ用の関数をうまく使うように書いてみる。

// 元のデータに追加要素(パターン2)
struct PersonStudent2 {
   // 元のデータPerson
   struct Person person ;

   // 追加部分
   char          dep[ 20 ] ;
   int           grade ;
} ;

void set_PersonStudent2( struct PersonStudent2* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // Personの関数を部分的に使う
   set_Person( &(p->person) , s , x ) ;

   // 追加分はしかたない
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

void print_PersonStudent2( struct PersonStudent2* p ) {
   // Personの関数を使う。
   print_Person( &p->person ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ; 
}

int main() {
   struct PersonStudent2 yama2 ;
   set_PersonStudent2( &yama2 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent2( &yama2 ) ;
   return 0 ;
}

このパターン2であれば、元データ Person の処理をうまく使っているので、 プログラムの記述量を減らすことはできるようになった。

しかし、print_PersonStudent2() のような処理は、名前と年齢だけ表示すればいいという場合、元データ構造が同じなのに、 いちいちプログラムを記述するのは面倒ではないか?

そこで、元データの処理を拡張し、処理の流用ができないであろうか?

基底クラスから派生クラスを作る

オブジェクト指向では、元データ(基底クラス)に新たな要素を加えたクラス(派生クラス)を 作ることを「派生」と呼ぶ。派生クラスを定義するときは、クラス名の後ろに、 「:」「public/protected/private」基底クラス名を書く。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   // 追加部分
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
     : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
} ;

int main() {
   Person saitoh( "t-saitoh" , 50 ) ;
   saitoh.print() ;
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;  // "yama 22"が表示される
   return 0 ;
}

ここで注目すべき点は、main()の中で、Studentクラス”yama”に対し、yama.print() を呼び出しているが、パターン2であれば、print_PersonStudent2()に相当するプログラムを 記述していない。 しかし、この派生を使うと Person の print() が自動的に流用することができる。 これは、基底クラスのメソッドを「継承」しているから、 このように書け、名前と年齢「yama 22」が表示される。

さらに、Student の中に、以下のような Student 専用の新しい print()を記述してもよい。

class Student ...略... {
   ...略...

   // Student クラス専用の print() 
   void print() {
      // 親クラス Person の print() を呼び出す
      Person::print() ;
      // Student クラス用の処理
      printf( "%s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   ...略...
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

この場合は、継承ではなく機能が上書き(オーバーライト)されるので、 「yama 22 / PS 2」が表示される。

派生クラスを作る際の後ろに記述した、public は、他にも protected , private を 記述できる。

public    だれもがアクセス可能。
protected であれば、派生クラスからアクセスが可能。
          派生クラスであれば、通常は protected で使うのが一般的。
private   派生クラスでもアクセス不可。

C言語で無理やりの派生

C言語でこのような派生と継承を実装する場合には、共用体を使う以下のようなテクニックが使われていた。
unix の GUI である X11 でも共用体を用いて派生を実装していた。

// 基底クラス
struct PersonBase {     // 基底クラス
   char name[ 20 ] ;
   int  age ;
} ;

struct PersonStudent {  // 派生クラス
   struct PersonBase base ;
   char dep[ 20 ] ;
   int  grade ;
} ;
                                   //(base) //(student)
union Person {                     // name  //[name]
   struct PersonBase    base ;     // age   //[age ]
   struct PersonStudent student ;           // dep
} ;                                         // grade

void person_Print( struct PersonBase* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;   
}

int main() {
   struct PersonBase    tsaitoh = { "tsaitoh" , 55 } ;
   struct PersonStudent mitsuki = { { "mitsuki" , 21 } , "KIT" , 4 } ;
   print_Person( &tsaitoh ) ;
   print_Person( (struct Person*)&mitsuki ) ;  // 無理やり print_Person を呼び出す
   return 0 ;
}

仮想関数への伏線

上記のような派生したプログラムを記述した場合、以下のようなプログラムでは何が起こるであろうか?

class Student ... {
   :
   void print() {
      Person::print() ;                    // 名前と年齢を表示
      printf( " %s %d¥n" , dep , grade ) ; // 所属と学年を表示
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   saitoh.print() ;                // t-saitoh 55 名前と年齢を表示

   Student mitsu( "mitsuki" , 20 , "KIT" ,  3 ) ;
   Student ayuka( "ayuka" ,   18 , "EI" ,   4 ) ;
   mitsu.print() ;                 // mitsuki 20 / KIT 3  名前,年齢,所属,学年を表示
   ayuka.print() ;                 // ayuka 18   / EI  4  名前,年齢,所属,学年を表示

   Person* family[] = {
      &saitoh , &mitsu , &ayuka ,  // 配列の中に、Personへのポインタと
   } ;                             // Studentへのポインタが混在している
                                   // 派生クラスのポインタは、
                                   // 基底クラスのポインタとしても扱える
   for( int i = 0 ; i < 3 ; i++ )
      family[ i ]->print() ;       // t-saitoh 55/mitsuki 20/ayuka 18
   return 0 ;                      // が表示される。 
}                                  // # "mitsuki 20/KIT 3" とか "ayuka 18/EI 4"
                                   // # が表示されてほしい?

派生と継承と仮想関数

前回の派生と継承のイメージを改めて記載する。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ; 
   saitoh.print() ; // 表示 t-saitoh 55
   yama.print() ;   // 表示 yamada 21
                    //      - ES 1
   nomu.print() ;   // 表示 nomura 22
   return 0 ;       //      - PS 2
}

このような処理でのデータ構造は、次のようなイメージで表される。

派生クラスでの問題提起

基底クラスのオブジェクトと、派生クラスのオブジェクトを混在してプログラムを記述したらどうなるであろうか?
上記の例では、Person オブジェクトと、Student オブジェクトがあったが、それをひとまとめで扱いたいこともある。

以下の処理では、Person型の saitoh と、Student 型の yama, nomu を、一つの table[] にまとめている。

int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      table[ i ]->print() ;
   }
   return 0 ;
}

C++では、Personへのポインタの配列に代入する時、Student型ポインタは、その基底クラスへのポインタとしても扱える。ただし、このように記述すると、table[] には、Person クラスのデータして扱われる。

このため、このプログラムを動かすと、以下のように、名前と年齢だけが3人分表示される。

t-saitoh 55
yamada   21
nomura   22

派生した型に応じた処理

上記のプログラムでは、 Person* table[] に、Person*型,Student*型を混在して保存をした。しかし、Person*として呼び出されると、yama のデータを表示しても、所属・学年は表示されない。上記のプログラムで、所属と名前を表示することはできないのだろうか?

// 混在したPersonを表示
for( int i = 0 ; i < 3 ; i++ )
   table[i]->print() ;
// Student は、所属と名前を表示して欲しい
t-saitoh 55
yamada 21
- ES 1
nomura 22
- PS 2

上記のプログラムでは、Person型では、後でStudent型と区別ができないと困るので、Person型に、Person型(=0)なのか、Student型(=1)なのか区別するための type という要素を追加し、type=1ならば、Student型として扱うようにしてみた。

// 基底クラス
class Person {
private:
   int  type ; // 型識別情報
   char name[ 20 ] ;
   int  age ;
public:
   Person( int tp , const char s[] , int x )
     : type( tp ) , age( x ) {
      strcpy( name , s ) ;
   }
   int type_person() { return type ; }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( int tp , const char s[] , int x ,
            const char d[] , int g )
            : Person( tp , s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
int main() {
   // type=0 は Person 型、type=1は Student 型
   Person saitoh( 0 , "t-saitoh" , 55 ) ;
   Student yama( 1 , "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( 1 , "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      switch( table[i]->type_person() ) {
      case 0 :
         table[i]->print() ;
         break ;
      case 1 :
         // 強制的にStudent*型として print() を呼び出す。
         //   最近のC++なら、(static_cast<Student*>(table[i]))->>print() ;
         ((Student*)table[i])->print() ;
         break ;
      }
   }
   return 0 ;
}

しかし、このプログラムでは、プログラマーがこのデータは、Personなので type=0 で初期化とか、Studentなので type=1 で初期化といったことを記述する必要がある。また、型情報(type)に応じて、その型にふさわしい処理を呼び出すための switch 文が必要になる。

もし、派生したクラスの種類がいくつもあるのなら、型情報の代入は注意深く書かないとバグの元になるし、型に応じた分岐は巨大なものになるだろう。実際、オブジェクト指向プログラミングが普及する前の初期の GUI プログラミングでは、巨大な switch 文が問題となっていた。

仮想関数

上記の、型情報の埋め込みと巨大なswitch文の問題の解決策として、C++では仮想関数(Virtual Function)が使える。

型に応じて異なる処理をしたい関数があったら、その関数の前に virtual と書くだけで良い。このような関数を、仮想関数と呼ぶ。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   virtual void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   virtual void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
int main() {
   // type=0 は Person 型、type=1は Student 型
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      table[i]->print() ;
   }
   return 0 ;
}

クラスの中に仮想関数が使われると、C++ では、プログラム上で見えないが、何らかの型情報をオブジェクトの中に保存してくれる。

また、仮想関数が呼び出されると、その型情報を元に、ふさわしい関数を自動的に呼び出してくれる。このため、プログラムも table[i]->print() といった極めて簡単に記述できるようになる。

関数ポインタ

仮想関数の仕組みを実現するためには、関数ポインタが使われる。

以下の例では、返り値=int,引数(int,int)の関数( int(*)(int,int) )へのポインタfpに、最初はaddが代入され、(*fp)(3,4) により、7が求まる。

int add( int a , int b ) {
   return a + b ;
}
int mul( int a , int b ) {
   return a * b ;
}
int main() {
   int (*fp)( int , int ) ;
   fp = add ;
   printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3+4=7
   fp = mul ;
   printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3*4=12

   int (*ftable[2])( int , int ) = {
      add , mul ,
   } ;
   for( int i = 0 ; i < 2 ; i++ )
      printf( "%d\n" , (*ftable[i])( 3 , 4 ) ) ;
   return 0 ;
}

仮想関数を使うクラスが宣言されると、一般的にそのコンストラクタでは、各クラス毎の仮想関数へのポインタのテーブルが型情報として保存されるのが一般的。仮想関数の呼び出しでは、仮想関数へのポインタを使って処理を呼び出す。このため効率よく仮想関数を動かすことができる。

派生と継承

隠ぺい化の次のステップとして、派生・継承を説明する。オブジェクト指向プログラミングでは、一番基本となるデータ構造を宣言し、その基本構造に様々な機能を追加した派生クラスを記述することでプログラムを作成する。今回は、その派生を理解するためにC言語で発生する問題点を考える。

派生を使わずに書くと…

元となるデータ構造(例えばPersonが名前と年齢)でプログラムを作っていて、 途中でその特殊パターンとして、所属と学年を加えた学生(Student)という データ構造を作るとする。

// 元となる構造体(Person) / 基底クラス
struct Person {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
} ;
// 初期化関数
void set_Person( struct Person* p ,
                 char s[] , int x ) {
   strcpy( p->name , s ) ;
   p->age = x ;
}
// 表示関数
void print_Person( struct Person* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;
}
int main() {
   struct Person saitoh ;
   set_Person( &saitoh , "t-saitoh" , 50 ) ;
   print_Person( &saitoh ) ;
   return 0 ;
}

パターン1(そのまんま…)

上記のPersonに、所属と学年を加えるのであれば、以下の方法がある。 しかし以下パターン1は、要素名がname,ageという共通な部分があるようにみえるが、 プログラム上は、PersonとPersonStudent1は、まるっきり関係のない別の型にすぎない。

このため、元データと共通部分があっても、同じ処理を改めて書き直しになる。

// 元のデータに追加要素(パターン1)
struct PersonStudent1 {
   // Personと同じ部分
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢

   // 追加部分
   char dep[ 20 ] ;  // 所属
   int  grade ;      // 学年
} ;
void set_PersonStudent1( struct PersonStudent1* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // set_Personと同じ処理を書いている。
   strcpy( p->name , s ) ;
   p->age = x ;

   // 追加された処理
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

// 名前と年齢 / 所属と学年を表示
void print_PersonStudent1( struct PersonStudent1* p ) {
   // print_Personと同じ処理を書いている。
   printf( "%s %d\n" , p->name , p->age ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ;
}

int main() {
   struct PersonStudent1 yama1 ;
   set_PersonStudent1( &yama1 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent1( &yama1 ) ;
   return 0 ;
}

パターン2(元データの処理を少し使って…)

パターン1では、機能が追加された新しいデータ構造のために、同じような処理を改めて書くことになりプログラムの記述量を減らせない。面倒なので、 元データ用の関数をうまく使うように書いてみる。

// 元のデータに追加要素(パターン2)
struct PersonStudent2 {
   // 元のデータPerson
   struct Person person ;

   // 追加部分
   char          dep[ 20 ] ;
   int           grade ;
} ;

void set_PersonStudent2( struct PersonStudent2* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // Personの関数を部分的に使う
   set_Person( &(p->person) , s , x ) ;

   // 追加分はしかたない
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

void print_PersonStudent2( struct PersonStudent2* p ) {
   // Personの関数を使う。
   print_Person( &p->person ) ;
   printf( "- %s %d¥n" , p->dep , p->grade ) ; 
}

int main() {
   struct PersonStudent2 yama2 ;
   set_PersonStudent2( &yama2 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent2( &yama2 ) ;
   return 0 ;
}

このパターン2であれば、元データ Person の処理をうまく使っているので、 プログラムの記述量を減らすことはできるようになった。

しかし、print_PersonStudent2() のような処理は、元データ構造が同じなのに、 いちいちプログラムを記述するのは面倒ではないか?

そこで、元データの処理を拡張し、処理の流用ができないであろうか?

基底クラスから派生クラスを作る

オブジェクト指向では、元データ(基底クラス)に新たな要素を加えたクラス(派生クラス)を 作ることを「派生」と呼ぶ。派生クラスを定義するときは、クラス名の後ろに、 「:」「public/protected/private」基底クラス名を書く。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   // 追加部分
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
} ;

int main() {
   Person saitoh( "t-saitoh" , 50 ) ;
   saitoh.print() ;
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
   return 0 ;
}

ここで注目すべき点は、main()の中で、Studentクラス”yama”に対し、yama.print() を呼び出しているが、パターン2であれば、print_PersonStudent2()に相当するプログラムを 記述していない。 しかし、この派生を使うと Person の print() が自動的に流用することができる。 これは、基底クラスのメソッドを「継承」しているから、 このように書け、名前と年齢「yama 22」が表示される。

さらに、Student の中に、以下のような Student 専用の新しい print()を記述してもよい。

class Student ...略... {
   ...略...

   // Student クラス専用の print() 
   void print() {
      // 親クラス Person の print() を呼び出す
      Person::print() ;
      // Student クラス用の処理
      printf( "%s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   ...略...
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

この場合は、継承ではなく機能が上書き(オーバーライト)されるので、 「yama 22 / PS 2」が表示される。

派生クラスを作る際の後ろに記述した、public は、他にも protected , private を 記述できる。

public    だれもがアクセス可能。
protected であれば、派生クラスからアクセスが可能。
          派生クラスであれば、通常は protected で使うのが一般的。
private   派生クラスでもアクセス不可。

仮想関数への伏線

上記のような派生したプログラムを記述した場合、以下のようなプログラムでは何が起こるであろうか?

class Student ... {
   :
   void print() {
      Person::print() ;                    // 名前と年齢を表示
      printf( " %s %d¥n" , dep , grade ) ; // 所属と学年を表示
   }
} ;
int main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   saitoh.print() ;                // t-saitoh 55 名前と年齢を表示

   Student mitsu( "mitsuki" , 20 , "KIT" ,  3 ) ;
   Student ayuka( "ayuka" ,   18 , "EI" ,   4 ) ;
   mitsu.print() ;                 // mitsuki 20 / KIT 3  名前,年齢,所属,学年を表示
   ayuka.print() ;                 // ayuka 18   / EI  4  名前,年齢,所属,学年を表示

   Person* family[] = {
      &saitoh , &mitsu , &ayuka ,  // 配列の中に、Personへのポインタと
   } ;                             // Studentへのポインタが混在している
                                   // 派生クラスのポインタは、
                                   // 基底クラスのポインタとしても扱える
   for( int i = 0 ; i < 3 ; i++ )
      family[ i ]->print() ;       // t-saitoh 55/mitsuki 20/ayuka 18
   return 0 ;                      // が表示される。 
}                                  // # "mitsuki 20/KIT 3" とか "ayuka 18/EI 4"
                                   // # が表示されてほしい?

派生と継承

前回の派生と継承のイメージを改めて記載する。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ; 
   saitoh.print() ; // 表示 t-saitoh 55
   yama.print() ;   // 表示 yamada 21
                    //      - ES 1
   nomu.print() ;   // 表示 nomura 22
}                   //      - PS 2

このような処理でのデータ構造は、次のようなイメージで表される。

派生クラスでの問題提起

基底クラスのオブジェクトと、派生クラスのオブジェクトを混在してプログラムを記述したらどうなるであろうか?
上記の例では、Person オブジェクトと、Student オブジェクトがあったが、それをひとまとめで扱いたいこともある。

以下の処理では、Person型の saitoh と、Student 型の yama, nomu を、一つの table[] にまとめている。

void main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      table[ i ]->print() ;
   }
}

C++では、Personへのポインタの配列に代入する時、Student型ポインタは、その基底クラスへのポインタとしても扱える。ただし、このように記述すると、table[] には、Person クラスのデータして扱われる。

このため、このプログラムを動かすと、以下のように、名前と年齢だけが3人分表示される。

t-saitoh 55
yamada   21
nomura   22

派生した型に応じた処理

上記のプログラムでは、 Person* table[] に、Person*型,Student*型を混在して保存をした。しかし、Person*として呼び出されると、yama のデータを表示しても、所属・学年は表示されない。上記のプログラムで、所属と名前を表示することはできないのだろうか?

// 混在したPersonを表示
for( int i = 0 ; i < 3 ; i++ )
   table[i]->print() ;
// Student は、所属と名前を表示して欲しい
t-saitoh 55
yamada 21
- ES 1
nomura 22
- PS 2

上記のプログラムでは、Person型では、後でStudent型と区別ができないと困るので、Person型に、Person型(=0)なのか、Student型(=1)なのか区別するための type という要素を追加し、type=1ならば、Student型として扱うようにしてみた。

// 基底クラス
class Person {
private:
   int  type ; // 型識別情報
   char name[ 20 ] ;
   int  age ;
public:
   Person( int tp , const char s[] , int x )
     : type( tp ) , age( x ) {
      strcpy( name , s ) ;
   }
   int type_person() { return type ; }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( int tp , const char s[] , int x ,
            const char d[] , int g )
            : Person( tp , s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   // type=0 は Person 型、type=1は Student 型
   Person saitoh( 0 , "t-saitoh" , 55 ) ;
   Student yama( 1 , "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( 1 , "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      switch( table[i]->type_person() ) {
      case 0 :
         table[i]->print() ;
         break ;
      case 1 :
         // 強制的にStudent*型として print() を呼び出す。
         //   最近のC++なら、(static_cast<Student*>(table[i]))->>print() ;
         ((Student*)table[i])->print() ;
         break ;
      }
   }
}

しかし、このプログラムでは、プログラマーがこのデータは、Personなので type=0 で初期化とか、Studentなので type=1 で初期化といったことを記述する必要がある。また、型情報(type)に応じて、その型にふさわしい処理を呼び出すための switch 文が必要になる。

もし、派生したクラスの種類がいくつもあるのなら、型情報の代入は注意深く書かないとバグの元になるし、型に応じた分岐は巨大なものになるだろう。実際、オブジェクト指向プログラミングが普及する前の初期の GUI プログラミングでは、巨大な switch 文が問題となっていた。

仮想関数

上記の、型情報の埋め込みと巨大なswitch文の問題の解決策として、C++では仮想関数(Virtual Function)が使える。

型に応じて異なる処理をしたい関数があったら、その関数の前に virtual と書くだけで良い。このような関数を、仮想関数と呼ぶ。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   virtual void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
   virtual void print() {
      Person::print() ;       // 基底クラスPersonで名前と年齢を表示
      printf( "- %s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   // type=0 は Person 型、type=1は Student 型
   Person saitoh( "t-saitoh" , 55 ) ;
   Student yama( "yamada" , 21 , "ES" , 1 ) ;
   Student nomu( "nomura" , 22 , "PS" , 2 ) ;

   Person* table[3] = {
      &saitoh , &yama , &nomu ,
   } ;
   for( int i = 0 ; i < 3 ; i++ ) {
      table[i]->print() ;
   }
}

クラスの中に仮想関数が使われると、C++ では、プログラム上で見えないが、何らかの型情報をオブジェクトの中に保存してくれる。

また、仮想関数が呼び出されると、その型情報を元に、ふさわしい関数を自動的に呼び出してくれる。このため、プログラムも table[i]->print() といった極めて簡単に記述できるようになる。

関数ポインタ

仮想関数の仕組みを実現するためには、関数ポインタが使われる。

以下の例では、返り値=int,引数(int,int)の関数( int(*)(int,int) )へのポインタfpに、最初はaddが代入され、(*fp)(3,4) により、7が求まる。

int add( int a , int b ) {
   return a + b ;
}
int mul( int a , int b ) {
   return a * b ;
}
void main() {
   int (*fp)( int , int ) ;
   fp = add ;
   printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3+4=7
   fp = mul ;
   printf( "%d\n" , (*fp)( 3 , 4 ) ) ; // 3*4=12

   int (*ftable[2])( int , int ) = {
      add , mul ,
   } ;
   for( int i = 0 ; i < 2 ; i++ )
      printf( "%d\n" , (*ftable[i])( 3 , 4 ) ) ;
}

仮想関数を使うクラスが宣言されると、一般的にそのコンストラクタでは、各クラス毎の仮想関数へのポインタのテーブルが型情報として保存されるのが一般的。仮想関数の呼び出しでは、仮想関数へのポインタを使って処理を呼び出す。このため効率よく仮想関数を動かすことができる。

派生と継承

隠ぺい化の次のステップとして、派生・継承を説明する。

派生を使わずに書くと…

元となるデータ構造(例えばPersonが名前と年齢)でプログラムを作っていて、 途中でその特殊パターンとして、所属と学年を加えた学生(Student)という データ構造を作るとする。

// 元となる構造体(Person)
struct Person {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
} ;
// 初期化関数
void set_Person( struct Person* p ,
                 char s[] , int x ) {
   strcpy( p->name , s ) ;
   p->age = x ;
}
// 表示関数
void print_Person( struct Person* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;
}
void main() {
   struct Person saitoh ;
   set_Person( &saitoh , "t-saitoh" , 50 ) ;
   print_Person( &saitoh ) ;
}

パターン1(そのまんま…)

上記のPersonに、所属と学年を加えるのであれば、以下の方法がある。 しかし以下パターン1は、要素名がname,ageという共通な部分があるようにみえるが、 プログラム上は、PersonとPersonStudent1は、まるっきり関係のない別の型にすぎない。

このため、元データと共通部分があっても、同じ処理を改めて書き直しになる。

// 元のデータに追加要素(パターン1)
struct PersonStudent1 {
   // Personと同じ部分
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢

   // 追加部分
   char dep[ 20 ] ;  // 所属
   int  grade ;      // 学年
} ;
void set_PersonStudent1( struct PersonStudent1* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // set_Personと同じ処理を書いている。
   strcpy( p->name , s ) ;
   p->age = x ;

   // 追加された処理
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

// 名前と年齢だけ表示
void print_PersonStudent1( struct PersonStudent1* p ) {
   // print_Personと同じ処理を書いている。
   printf( "%s %d\n" , p->name , p->age ) ;
}

void main() {
   struct PersonStudent1 yama1 ;
   set_PersonStudent1( &yama1 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent1( &yama1 ) ;
}

パターン2(元データの処理を少し使って…)

パターン1では、同じような処理を何度も書くことになり、面倒なので、 元データ用の関数をうまく使うように書いてみる。

// 元のデータに追加要素(パターン2)
struct PersonStudent2 {
   // 元のデータPerson
   struct Person person ;

   // 追加部分
   char          dep[ 20 ] ;
   int           grade ;
} ;

void set_PersonStudent2( struct PersonStudent2* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // Personの関数を部分的に使う
   set_Person( &(p->person) , s , x ) ;

   // 追加分はしかたない
   strcpy( p->dep , d ) ;
   p->grade = g ;
}

void print_PersonStudent2( struct PersonStudent2* p ) {
   // Personの関数を使う。
   print_Person( &p->person ) ;
}

void main() {
   struct PersonStudent2 yama2 ;
   set_PersonStudent2( &yama2 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent2( &yama2 ) ;
}

このパターン2であれば、元データ Person の処理をうまく使っているので、 プログラムの記述量を減らすことはできるようになった。

しかし、print_PersonStudent2() のような処理は、元データ構造が同じなのに、 いちいちプログラムを記述するのは面倒ではないか?

そこで、元データの処理を拡張し、処理の流用ができないであろうか?

基底クラスから派生クラスを作る

オブジェクト指向では、元データ(基底クラス)に新たな要素を加えたクラス(派生クラス)を 作ることを「派生」と呼ぶ。派生クラスを定義するときは、クラス名の後ろに、 「:」「public/protected/private」基底クラス名を書く。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x )
     : age( x ) {
      strcpy( name , s ) ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス(Student は Person から派生)
class Student : public Person {
private:
   // 追加部分
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {  // 追加された処理
      strcpy( dep , d ) ;
      grade = g ;
   }
} ;
void main() {
   Person saitoh( "t-saitoh" , 50 ) ;
   saitoh.print() ;
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

ここで注目すべき点は、main()の中で、Studentクラス”yama”に対し、yama.print() を呼び出しているが、パターン2であれば、print_PersonStudent2()に相当するプログラムを 記述していない。 しかし、この派生を使うと Person の print() が自動的に流用することができる。 これは、基底クラスのメソッドを「継承」しているから、 このように書け、名前と年齢「yama 22」が表示される。

さらに、Student の中に、以下のような Student 専用の新しい print()を記述してもよい。

class Student ...略... {
   ...略...

   // Student クラス専用の print() 
   void print() {
      // 親クラス Person の print() を呼び出す
      Person::print() ;
      // Student クラス用の処理
      printf( "%s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   ...略...
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

この場合は、継承ではなく機能が上書き(オーバーライト)されるので、 「yama 22 / PS 2」が表示される。

派生クラスを作る際の後ろに記述した、public は、他にも protected , private を 記述できる。

public    だれもがアクセス可能。
protected であれば、派生クラスからアクセスが可能。
派生クラスであれば、通常は protected で使うのが一般的。
private   派生クラスでもアクセス不可。

仮想関数への伏線

上記のような派生したプログラムを記述した場合、以下のようなプログラムでは何が起こるであろうか?

class Student ... {
   :
   void print() {
      Person::print() ;                    // 名前と年齢を表示
      printf( " %s %d¥n" , dep , grade ) ; // 所属と学年を表示
   }
} ;
void main() {
   Person saitoh( "t-saitoh" , 55 ) ;
   saitoh.print() ; // t-saitoh 55 名前と年齢を表示

   Student mitsu( "mitsuki" , 19 , "E" ,  4 ) ;
   Student ayuka( "ayuka" ,   17 , "EI" , 2 ) ;
   mitsu.print() ; // mitsuki 19 / E 4   名前,年齢,所属,学年を表示
   ayuka.print() ; // ayuka 17   / EI 2  名前,年齢,所属,学年を表示

   Person* family[] = {
      &saitoh , &mitsu , &ayuka ,  // 配列の中に、Personへのポインタと
   } ;                             // Studentへのポインタが混在している
                                   // 派生クラスのポインタは、
                                   // 基底クラスのポインタとしても扱える
   for( int i = 0 ; i < 3 ; i++ )
      family[ i ]->print() ;       // t-saitoh 53/mitsuki 18/ayuka 16
}                                  //  が表示される。

派生と継承

隠ぺい化の次のステップとして、派生・継承を説明する。

派生を使わずに書くと…

元となるデータ構造(例えばPersonが名前と年齢)でプログラムを作っていて、 途中でその特殊パターンとして、所属と学年を加えた学生(Student)という データ構造を作るとする。

// 元となる構造体(Person)
struct Person {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
} ;
// 初期化関数
void set_Person( struct Person* p ,
                 char s[] , int x ) {
   strcpy( p->name , s ) ;
   p->age = x ;
}
// 表示関数
void print_Person( struct Person* p ) {
   printf( "%s %d\n" , p->name , p->age ) ;
}
void main() {
   struct Person saitoh ;
   set_Person( &saitoh , "t-saitoh" , 50 ) ;
   print_Person( &saitoh ) ;
}

パターン1(そのまんま…)

上記のPersonに、所属と学年を加えるのであれば、以下の方法がある。 しかし以下パターン1は、要素名がname,ageという共通な部分があるようにみえるが、 プログラム上は、PersonとPersonStudent1は、まるっきり関係のない別の型にすぎない。

このため、元データと共通部分があっても、同じ処理を改めて書き直しになる。

// 元のデータに追加要素(パターン1)
struct PersonStudent1 {
   char name[ 20 ] ; // 名前
   int  age ;        // 年齢
   char dep[ 20 ] ;  // 所属
   int  grade ;      // 学年
} ;
void set_PersonStudent1( struct PersonStudent1* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   strcpy( p->name , s ) ; // 同じことを書いてる
   p->age = x ;
   strcpy( p->dep , d ) ;  // 追加分はしかたない
   p->grade = g ;
}
// 名前と年齢だけ表示
void print_PersonStudent1( struct PersonStudent1* p ) {
   // また同じ処理を書いてる
   printf( "%s %d\n" , p->name , p->age ) ;
}
void main() {
   struct PersonStudent1 yama1 ;
   set_PersonStudent1( &yama1 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent1( &yama1 ) ;
}

パターン2(元データの処理を少し使って…)

パターン1では、同じような処理を何度も書くことになり、面倒なので、 元データ用の関数をうまく使うように書いてみる。

// 元のデータに追加要素(パターン2)
struct PersonStudent2 {
   struct Person person ;
   char          dep[ 20 ] ;
   int           grade ;
} ;
void set_PersonStudent2( struct PersonStudent2* p ,
                         char s[] , int x ,
                         char d[] , int g ) {
   // Personの関数を部分的に使う
   set_Person( &(p->person) , s , x ) ;
   // 追加分はしかたない
   strcpy( p->dep , d ) ;
   p->grade = g ;
}
void print_PersonStudent2( struct PersonStudent2* p ) {
   // Personの関数を使う。
   print_Person( &p->person ) ;
}
void main() {
   struct PersonStudent2 yama2 ;
   set_PersonStudent2( &yama2 ,
                       "yama" , 22 , "PS" , 2 ) ;
   print_PersonStudent2( &yama2 ) ;
}

このパターン2であれば、元データ Person の処理をうまく使っているので、 プログラムの記述量を減らすことはできるようになった。

しかし、print_PersonStudent2() のような処理は、元データ構造が同じなのに、 いちいちプログラムを記述するのは面倒ではないか?

そこで、元データの処理を拡張し、処理の流用ができないであろうか?

基底クラスから派生クラスを作る

オブジェクト指向では、元データ(基底クラス)に新たな要素を加えたクラス(派生クラス)を 作ることを「派生」と呼ぶ。派生クラスを定義するときは、クラス名の後ろに、 「:」「public/protected/private」基底クラス名を書く。

// 基底クラス
class Person {
private:
   char name[ 20 ] ;
   int  age ;
public:
   Person( const char s[] , int x ) {
      strcpy( name , s ) ;
      age = x ;
   }
   void print() {
      printf( "%s %d\n" , name , age ) ;
   }
} ;
// 派生クラス
class Student : public Person {
private:
   char dep[ 20 ] ;
   int  grade ;
public:
   Student( const char s[] , int x ,
            const char d[] , int g )
            : Person( s , x ) // 基底クラスのコンストラクタ
   {
      strcpy( dep , d ) ;
      grade = g ;
   }
} ;
void main() {
   Person saitoh( "t-saitoh" , 50 ) ;
   saitoh.print() ;
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

ここで注目すべき点は、main()の中で、Studentクラス”yama”に対し、yama.print() を呼び出しているが、パターン2であれば、print_PersonStudent2()に相当するプログラムを 記述していない。 しかし、この派生を使うと Person の print() が自動的に流用することができる。 これは、基底クラスのメソッドを「継承」しているから、 このように書け、名前と年齢「yama 22」が表示される。

さらに、Student の中に、以下のような Student 専用の新しい print()を記述してもよい。

class Student ...略... {
   ...略...
   void print() {
      Person::print() ;
      printf( "%s %d\n" , dep , grade ) ;
   }
} ;
void main() {
   ...略...
   Student yama( "yama" , 22 , "PS" , 2 ) ;
   yama.print() ;
}

この場合は、継承ではなく機能が上書き(オーバーライト)されるので、 「yama 22 / PS 2」が表示される。

派生クラスを作る際の後ろに記述した、public は、他にも protected , private を 記述できる。

public    だれもがアクセス可能。
protected であれば、派生クラスからアクセスが可能。
派生クラスであれば、通常は protected で使うのが一般的。
private   派生クラスでもアクセス不可。

仮想関数への伏線

上記のような派生したプログラムを記述した場合、以下のようなプログラムでは何が起こるであろうか?

class Student ... {
   :
   void print() {
      Person::print() ;                    // 名前と年齢を表示
      printf( " %s %d¥n" , dep , grade ) ; // 所属と学年を表示
   }
} ;
void main() {
   Person saitoh( "t-saitoh" , 53 ) ;
   saitoh.print() ; // t-saitoh 53

   Student mitsu( "mitsuki" , 18 , "E" , 4 ) ;
   Student ayuka( "ayuka" , 16 , "EI" , 2 ) ;
   mitsu.print() ; // mitsuki 18 / E 4   名前,年齢,所属,学年を表示
   ayuka.print() ; // ayuka 16 / EI 2    名前,年齢,所属,学年を表示

   Person* family[] = {
      &saitoh , &mitsu , &ayuka ,  // 配列の中に、Personへのポインタと
   } ;                             // Studentへのポインタが混在している
                                   // 派生クラスのポインタは、
                                   // 基底クラスのポインタとしても扱える
   for( int i = 0 ; i < 3 ; i++ )
      family[ i ]->print() ;       // t-saitoh 53/mitsuki 18/ayuka 16
}                                  //  が表示される。