ホーム » 「構文木」タグがついた投稿
タグアーカイブ: 構文木
2分木による構文木とデータベースとB木
コンパイラの処理の流れ
構文の構造を表すために、2分木を使うという話をこの後に行うが、その前にコンパイラが機械語を生成するまでの処理の流れについて説明をする。
Cコンパイラのソース ↓ プリプロセッサ (#define,#includeなどの処理) ↓ コンパイラ ・字句解析(ソースコードをトークンに切り分ける) ・構文解析(トークンから構文木を生成) ・最適化(命令を効率よく動かすために命令を早い命令に書き換え) ・コード生成(構文木から中間コードを生成) | | リンカでライブラリと結合 (+)←---ライブラリ ↓ 機械語
2項演算と構文木
演算子を含む式が与えられたとして、古いコンパイラではそれを逆ポーランド変換して計算命令を生成していた。しかし最近の複雑な言語では、計算式や命令を処理する場合、その式(または文)の構造を表す2分木(構文木)を生成する。。
+ / \ 1 * / \ 2 3
演算子の木のノードで、末端は数値であることに注目し、右枝・左枝がNULLなら数値(data部にはその数値)、それ以外は演算子(data部には演算子の文字コード)として扱うとして、上記の構文木のデータを作る処理と、その構文木の値を計算するプログラムを示す。
struct Tree { int data ; struct Tree* left ; struct Tree* right ; } ; struct Tree* tree_int( int x ) // 数値のノード { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->data = x ; n->left = n->right = NULL ; } return n ; } struct Tree* tree_op( int op , // 演算子のノード struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { // ~~~~~~~~~~~~~~~~~~~~~(D) n->data = op ; n->left = l ; n->right = r ; } return n ; } // 与えられた演算子の木を計算する関数 int eval( struct Tree* p ) { if ( p->left == NULL && p->right == NULL ) { // 数値のノードは値を返す return p->data ; } else { // 演算子のノードは、左辺値,右辺値を求め // その計算結果を返す switch( p->data ) { case '+' : return eval( p->left ) + eval( p->right ) ; case '*' : return eval( p->left ) * eval( p->right ) ; } // ~~~~~~~~~~~~~~~(E) ~~~~~~~~(F) } } void main() { struct Tree* exp = // 1+(2*3) の構文木を生成 tree_op( '+' , tree_int( 1 ) , tree_op( '*' , tree_int( 2 ) , tree_int( 3 ) ) ) ; printf( "%d¥n" , eval( exp ) ) ; }
理解度確認
- 上記プログラム中の(A)~(F)の型を答えよ。
2分探索木の考え方を拡張したものでB木があり、データベースシステムではB木を基本としたデータ構造が活用されている。
B木の構造
2分木では、データの増減で木の組換えの発生頻度が高い。そこで、1つのノード内に複数のデータを一定数覚える方法をとる。B木では、位数=Nに対し、最大2N個のデータ d0, … , d2N-1 と、2N+1本のポインタ p0, … , p2N から構成される。pi の先には、di-1< x < di を満たすデータが入った B木のノードを配置する。ただし、データの充填率を下げないようにするため、データは最小でもN個、最大で2N個を保存する。下図は位数2のB木の例を示す。
B木からデータの検索
データを探す場合は、ノード内のデータ di の中から探し、見つからない場合は、ポインタの先のデータを探す。位数がある程度大きい場合、ノード内の検索は2分探索法が使用できる。また、1つのノード内の検索が終われば、探索するデータ件数は、1/N〜1/2Nとなることから、指数的に対象件数が減っていく。よって、検索時間のオーダは、O( log N ) となる。
B木へのデータの追加
B木にデータを追加する場合は、ノード内に空きがあれば、単純にデータの追加を行う。ノード内のデータが2N個を越える場合は、以下のような処理を行う。
ノード内のデータと追加データを並べ、その中央値を選ぶ。この中央値より大きいデータは、新たにつくられたノードに移す。中央値のデータは上のノードに追加処理を行う。このような方法を取ることで、2分木のような木の偏りが作られにくい構造となるようにする。
データを削除する場合も同様に、データ件数がN個を下回る場合は、隣接するノードからデータを取ってくることで、N個を下回らないようにする。
B木とデータベース
このB木の構造は、一般的にデータベースのデータを保存するために広く利用されている。
データベースシステムでは、データを効率よく保存するだけでなく、データの一貫性が保たれるように作られている。
例えば、データベースのシステムが途中でクラッシュした場合でも、データ更新履歴の情報を元にデータを元に戻し、データを再投入して復旧できなければならない。データを複数の所からアクセスした場合に、その順序から変な値にならないように、排他制御も行ってくれる。
データベースで最も使われているシステムは、データすべてを表形式で扱うリレーショナル・データベースである。
((リレーショナル・データベースの例)) STUDENT[] RESULT[] ID | name | grade | course ID | subject | point -----+----------+-------+-------- -----+---------+------- 1001 | t-saitoh | 5 | EI 1001 | math | 83 1002 | sakamoto | 4 | E 1001 | english | 65 1003 | aoyama | 4 | EI 1002 | english | 90 外部キー ((SQLの例 2つの表の串刺し)) -- 60点以上の学生名,科目名,点数を出力 -- select STUDENT.name, RESULT.subject, RESULT.point --射影-- from STUDENT , RESULT --結合-- where STUDENT.ID == RESULT.ID -- 串刺し -- --選択-- and RESULT.point >= 60 ; ((上記SQLをC言語で書いた場合)) for( st = 0 ; st < 3 ; st++ ) // 結合(from) for( re = 0 ; re < 3 ; re++ ) if ( student[ st ].ID == result[ re ].ID // 選択(where) && result[ re ].point >= 60 ) printf( "%s %s %d" , // 射影(select) student[ st ].name , result[ re ].subject , result[ re ].point ) ;
- 学生と成績(Paiza.ioでSQL)
- sql-mapping.cxx
B+木
データベースの処理では、目的のデータを O(log N) で見つける以外にも、全データに対する処理も重要である。この場合、全てのデータに対する処理では、単純なB木では再帰呼び出しが必要となる。しかし、他の表でも再帰処理を伴うと、プログラムは複雑になってしまう。
そこで、B木のデータを横方向に並べて処理を行う場合に、その処理が簡単になるように B+木が用いられる。
この方法では、末端のノードは、隣接するノードへのポインタを持つ。下図で示すB+木では、青で示す検索用のB木の部分と、赤で示す順次処理を行うためのシーケンスセットの部分から構成される。
2分木による構文木とデータベースとB木
2項演算と構文木
演算子を含む式が与えられたとして、古いコンパイラではそれを逆ポーランド変換して計算命令を生成していた。しかし最近の複雑な言語では、計算式や命令を処理する場合、その式(または文)の構造を表す2分木(構文木)を生成する。。
+ / \ 1 * / \ 2 3
演算子の木のノードで、末端は数値であることに注目し、右枝・左枝がNULLなら数値(data部にはその数値)、それ以外は演算子(data部には演算子の文字コード)として扱うとして、上記の構文木のデータを作る処理と、その構文木の値を計算するプログラムを示す。
struct Tree { int data ; struct Tree* left ; struct Tree* right ; } ; struct Tree* tree_int( int x ) // 数値のノード { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->data = x ; n->left = n->right = NULL ; } return n ; } struct Tree* tree_op( int op , // 演算子のノード struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { // ~~~~~~~~~~~~~~~~~~~~~(D) n->data = op ; n->left = l ; n->right = r ; } return n ; } // 与えられた演算子の木を計算する関数 int eval( struct Tree* p ) { if ( p->left == NULL && p->right == NULL ) { // 数値のノードは値を返す return p->data ; } else { // 演算子のノードは、左辺値,右辺値を求め // その計算結果を返す switch( p->data ) { case '+' : return eval( p->left ) + eval( p->right ) ; case '*' : return eval( p->left ) * eval( p->right ) ; } // ~~~~~~~~~~~~~~~(E) ~~~~~~~~(F) } } void main() { struct Tree* exp = // 1+(2*3) の構文木を生成 tree_op( '+' , tree_int( 1 ) , tree_op( '*' , tree_int( 2 ) , tree_int( 3 ) ) ) ; printf( "%d¥n" , eval( exp ) ) ; }
理解度確認
- 上記プログラム中の(A)~(F)の型を答えよ。
2分探索木の考え方を拡張したものでB木があり、データベースシステムではB木を基本としたデータ構造が活用されている。
B木の構造
2分木では、データの増減で木の組換えの発生頻度が高い。そこで、1つのノード内に複数のデータを一定数覚える方法をとる。B木では、位数=Nに対し、最大2N個のデータ d0, … , d2N-1 と、2N+1本のポインタ p0, … , p2N から構成される。pi の先には、di-1< x < di を満たすデータが入った B木のノードを配置する。ただし、データの充填率を下げないようにするため、データは最小でもN個、最大で2N個を保存する。下図は位数2のB木の例を示す。
B木からデータの検索
データを探す場合は、ノード内のデータ di の中から探し、見つからない場合は、ポインタの先のデータを探す。位数がある程度大きい場合、ノード内の検索は2分探索法が使用できる。また、1つのノード内の検索が終われば、探索するデータ件数は、1/N〜1/2Nとなることから、指数的に対象件数が減っていく。よって、検索時間のオーダは、O( log N ) となる。
B木へのデータの追加
B木にデータを追加する場合は、ノード内に空きがあれば、単純にデータの追加を行う。ノード内のデータが2N個を越える場合は、以下のような処理を行う。
ノード内のデータと追加データを並べ、その中央値を選ぶ。この中央値より大きいデータは、新たにつくられたノードに移す。中央値のデータは上のノードに追加処理を行う。このような方法を取ることで、2分木のような木の偏りが作られにくい構造となるようにする。
データを削除する場合も同様に、データ件数がN個を下回る場合は、隣接するノードからデータを取ってくることで、N個を下回らないようにする。
B木とデータベース
このB木の構造は、一般的にデータベースのデータを保存するために広く利用されている。
データベースシステムでは、データを効率よく保存するだけでなく、データの一貫性が保たれるように作られている。
例えば、データベースのシステムが途中でクラッシュした場合でも、データ更新履歴の情報を元にデータを元に戻し、データを再投入して復旧できなければならない。データを複数の所からアクセスした場合に、その順序から変な値にならないように、排他制御も行ってくれる。
データベースで最も使われているシステムは、データすべてを表形式で扱うリレーショナル・データベースである。
((リレーショナル・データベースの例)) STUDENT[] RESULT[] ID | name | grade | course ID | subject | point -----+----------+-------+-------- -----+---------+------- 1001 | t-saitoh | 5 | EI 1001 | math | 83 1002 | sakamoto | 4 | E 1001 | english | 65 1003 | aoyama | 4 | EI 1002 | english | 90 外部キー ((SQLの例 2つの表の串刺し)) -- 60点以上の学生名,科目名,点数を出力 -- select STUDENT.name, RESULT.subject, RESULT.point --射影-- from STUDENT , RESULT --結合-- where STUDENT.ID == RESULT.ID -- 串刺し -- --選択-- and RESULT.point >= 60 ; ((上記SQLをC言語で書いた場合)) for( st = 0 ; st < 3 ; st++ ) // 結合(from) for( re = 0 ; re < 3 ; re++ ) if ( student[ st ].ID == result[ re ].ID // 選択(where) && result[ re ].point >= 60 ) printf( "%s %s %d" , // 射影(select) student[ st ].name , result[ re ].subject , result[ re ].point ) ;が
- 学生と成績(Paiza.ioでSQL)
- sql-mapping.cxx
B+木
データベースの処理では、目的のデータを O(log N) で見つける以外にも、全データに対する処理も重要である。この場合、全てのデータに対する処理では、単純なB木では再帰呼び出しが必要となる。しかし、他の表でも再帰処理を伴うと、プログラムは複雑になってしまう。
そこで、B木のデータを横方向に並べて処理を行う場合に、その処理が簡単になるように B+木が用いられる。
この方法では、末端のノードは、隣接するノードへのポインタを持つ。下図で示すB+木では、青で示す検索用のB木の部分と、赤で示す順次処理を行うためのシーケンスセットの部分から構成される。
演算子と2分木による式の表現
2分木の応用として式の表現の説明を行うけど、その前に計算式の一般論の説明を行う。
逆ポーランド記法
一般的に 1*2 + 3*4 と記載すると、数学的には演算子の優先順位を考慮して、(1*2)+(3*4) のように乗算を先に行う。このような優先順位を表現する時に、()を使わない方法として、逆ポーランド記法がある。
演算子の書き方には、前置記法、中置記法、後置記法があり、後置記法は、「2と3を掛ける、それに1を加える」と捉えると、日本語の処理と似ている。
中置記法 1+2*3 前置記法 +,1,*,2,3 後置記法 1,2,3,*,+ # 1と「2と3をかけた値」をたす。
後置記法は、一般的に逆ポーランド記法(Reverse Polish Notation)とも呼ばれ、式を機械語の命令に置き換える際に役立つ。
演算子の右結合・左結合
例えば、”1/2*3″という式が与えられたとする。この結果は、1/6だろうか?3/2だろうか?
一般的な数学では、優先順位が同じ演算子が並んだ場合、左側から計算を行う。つまり”1/2*3″は、”(1/2)*3″を意味する。こういった左側の優先順位が高い演算子は左結合の演算子という。
ただしC言語では、”a = b = c = 0″ と書くと、”a = (b = (c = 0))” として扱われる。こういった代入演算子は、 右結合の演算子である。
理解度確認
以下の式を指定された書き方で表現せよ。
逆ポーランド記法 1,2,*,3,4,*,+ を中置記法で表現せよ。 中置記法 (1+2)*3-4*5 を逆ポーランド記法で表現せよ。
以前の情報処理技術者試験では、スタックの概念の理解の例題として、逆ポーランド記法への変換アルゴリズムのプログラム作成が出題されることが多かったが、最近は出題されることはなくなってきた。
逆ポーランド記法の式の実行
この逆ポーランド記法で書かれた式から結果を求めるプログラムは以下のように記述できる。このプログラムでは式を簡単にするため、数値は1桁の数字のみとする。
// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '\0' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }
逆ポーランド記法の式の実行は、上記のようにスタックを用いると簡単にできる。このようなスタックと簡単な命令で複雑な処理を行う方法はスタックマシンと呼ばれる。Java のバイトコードインタプリタもこのようなスタックマシンである。
Cプログラママニア向けの考察
上記のプログラムでは、int r=pop();…push(l+r); で記載しているが、
push( pop() + pop() ) ;とは移植性を考慮して書かなかった。理由を述べよ。
最初の関数電卓
初期の関数電卓では複雑な数式を計算する際に、演算子の優先順位を扱うのが困難であった。このため、HP社の関数電卓では、式の入力が RPN を用いていた。(HP-10Cシリーズ)
2項演算と構文木
演算子を含む式が与えられたとして、古いコンパイラではそれを逆ポーランド変換して計算命令を生成していた。しかし最近の複雑な言語では、計算式や命令を処理する場合、その式(または文)の構造を表す2分木(構文木)を生成する。。
+ / \ 1 * / \ 2 3
演算子の木のノードで、末端は数値であることに注目し、右枝・左枝がNULLなら数値(data部にはその数値)、それ以外は演算子(data部には演算子の文字コード)として扱うとして、上記の構文木のデータを作る処理と、その構文木の値を計算するプログラムを示す。
struct Tree { int data ; struct Tree* left ; struct Tree* right ; } ; struct Tree* tree_int( int x ) // 数値のノード { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->data = x ; n->left = n->right = NULL ; } return n ; } struct Tree* tree_op( int op , // 演算子のノード struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { // ~~~~~~~~~~~~~~~~~~~~~(D) n->data = op ; n->left = l ; n->right = r ; } return n ; } // 与えられた演算子の木を計算する関数 int eval( struct Tree* p ) { if ( p->left == NULL && p->right == NULL ) { // 数値のノードは値を返す return p->data ; } else { // 演算子のノードは、左辺値,右辺値を求め // その計算結果を返す switch( p->data ) { case '+' : return eval( p->left ) + eval( p->right ) ; case '*' : return eval( p->left ) * eval( p->right ) ; } // ~~~~~~~~~~~~~~~(E) ~~~~~~~~(F) } } void main() { struct Tree* exp = // 1+(2*3) の構文木を生成 tree_op( '+' , tree_int( 1 ) , tree_op( '*' , tree_int( 2 ) , tree_int( 3 ) ) ) ; printf( "%d¥n" , eval( exp ) ) ; }
理解度確認
- push(),pop() のスタックは、保存と取り出しの順序を表す単語の頭文字4つを使って何と呼ばれるか?
- 上記プログラム中の(A)~(F)の型を答えよ。
意思決定木と構文解析
前回までの授業で2分探索木の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木と構文木を紹介する。
意思決定木
意思決定木の説明ということで、yes/noクイズの例を示しながら、2分木になっていることを 説明しプログラムを紹介。
((意思決定木の例:うちの子供が発熱した時)) 38.5℃以上の発熱がある? no/ \yes 元気がある? むねがひいひい? yes/ \no no/ \yes 様子をみる 氷枕で病院 解熱剤で病院 速攻で病院
このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。これは2分木と同じであり、このような処理は以下のように記述ができる。
struct Tree { char *qa ; struct Tree* yes ; struct Tree* no ; } ; struct Tree* dtree( char *s , struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->qa = s ; n->yes = l ; n->no = r ; } return n ; } void main() { struct Tree* p = dtree( "38.5℃以上の発熱がある?" , dtree( "胸がひぃひぃ?" , dtree( "速攻で病院",NULL,NULL ) , dtree( "解熱剤で病院",NULL,NULL ) ) , dtree( "元気がある?" , dtree( "様子をみる",NULL,NULL ) , dtree( "氷枕で病院",NULL,NULL ) ) ) ; // 決定木をたどる struct Tree* d = p ; while( d->yes != NULL || d->no != NULL ) { printf( "%s¥n" , d->qa ) ; scanf( "%d" , &ans ) ; // 回答に応じてyes/noの枝に進む。 if ( ans == 1 ) // yesを選択 d = d->yes ; else if ( ans == 0 ) // noを選択 d = d->no ; } // 最終決定を表示 printf( "%s¥n" , d->qa ) ; }
コンパイラと言語処理系
2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:通訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:翻訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
最初のC++の実装では、C++をトランスレータにかけてC言語を生成し、C言語のコンパイラで動かしていた。
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ
- ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
- エミュレーター
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
近々の例であれば、AppleのARMベースM1チップで intel CPU の動きを真似て動作させる Rosetta2 がトピック。パソコンで古いファミコンのソフトを動かすといった技術もエミュレータ。- 同じCPUで異なるOSを動かす場合は、CPU仮想化。
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
に分けられる。
C言語で機械語が生成されるまで
C言語のプログラムから、機械語の命令が生成されるまでは、以下のような処理が行われる。
一般的にコンパイラの処理というと、ソースコードから機械語を生成するまでの処理を指すが、C言語ではプリプロセッサ処理を含んだり、コンパイラの処理(ソースコードからオブジェクトファイル生成まで)のほかにリンク処理を含んで使われることも多い。
foo.c C言語のソース ↓ プリプロセッサ処理 foo.c(#行の無いC言語のソース) ↓ コンパイラ foo.obj(オブジェクトファイル/中間コード) ↓ (+) ← ライブラリ(scanf,printfなどの組み込み関数などをまとめたもの) ↓ リンカ(リンケージエディタ) foo.exe
コンパイラの処理
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(token)に分解 - 構文解析(syntax analysys)
tokenの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コード(オブジェクトファイル)として出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。
通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) <表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) <加算式> ::= <乗算式> '+' <乗算式> | <乗算式> '-' <乗算式> | <乗算式> ; <乗算式> ::= <数字> '*' <乗算式> | <数字> '/' <乗算式> | <数字> ; <数字> ::= [0-9]+ ;
上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。
演算子と2分木による式の表現
2分木の応用として式の表現の説明を行うけど、その前に計算式の一般論の説明を行う。
逆ポーランド記法
一般的に 1*2 + 3*4 と記載すると、数学的には演算子の優先順位を考慮して、(1*2)+(3*4) のように乗算を先に行う。このような優先順位を表現する時に、()を使わない方法として、逆ポーランド記法がある。
演算子の書き方には、前置記法、中置記法、後置記法があり、後置記法は、「2と3を掛ける、それに1を加える」と捉えると、日本語の処理と似ている。
中置記法 1+2*3 前置記法 +,1,*,2,3 後置記法 1,2,3,*,+ # 1と「2と3をかけた値」をたす。
後置記法は、一般的に逆ポーランド記法(Reverse Polish Notation)とも呼ばれ、式を機械語の命令に置き換える際に役立つ。
演算子の右結合・左結合
例えば、”1/2*3″という式が与えられたとする。この結果は、1/6だろうか?3/2だろうか?
一般的な数学では、優先順位が同じ演算子が並んだ場合、左側から計算を行う。つまり”1/2*3″は、”(1/2)*3″を意味する。こういった左側の優先順位が高い演算子は左結合の演算子という。
ただしC言語では、”a = b = c = 0″ と書くと、”a = (b = (c = 0))” として扱われる。こういった代入演算子は、 右結合の演算子である。
理解度確認
以下の式を指定された書き方で表現せよ。
逆ポーランド記法 1,2,*,3,4,*,+ を中置記法で表現せよ。 中置記法 (1+2)*3-4*5 を逆ポーランド記法で表現せよ。
以前の情報処理技術者試験では、スタックの概念の理解の例題として、逆ポーランド記法への変換アルゴリズムのプログラム作成が出題されることが多かったが、最近は出題されることはなくなってきた。
逆ポーランド記法の式の実行
この逆ポーランド記法で書かれた式から結果を求めるプログラムは以下のように記述できる。このプログラムでは式を簡単にするため、数値は1桁の数字のみとする。
// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }// 単純な配列を用いたスタック int stack[ 10 ] ; int sp = 0 ; void push( int x ) { stack[ sp++ ] = x ; } int pop() { return stack[ --sp ] ; } // 逆ポーランド記法の計算 int rpn( char* p ) { for( ; *p != '\0' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }' ; p++ ) { if ( isdigit( *p ) ) { // ~~(A) // 数字はスタックに積む push( *p - '0' ) ; // ~~~~~~~~(B) } else if ( *p == '+' ) { // 演算子+は上部2つを取出し int r = pop() ; int l = pop() ; // 加算結果をスタックに積む push( l + r ) ; } else if ( *p == '*' ) { // 演算子*は上部2つを取出し int r = pop() ; int l = pop() ; // 乗算結果をスタックに積む push( l * r ) ; }//~~~~~~~~~~~~~(C) } // 最終結果がスタックに残る return pop() ; } void main() { printf( "%d\n" , rpn( "123*+" ) ) ; }
逆ポーランド記法の式の実行は、上記のようにスタックを用いると簡単にできる。このようなスタックと簡単な命令で複雑な処理を行う方法はスタックマシンと呼ばれる。Java のバイトコードインタプリタもこのようなスタックマシンである。
Cプログラママニア向けの考察
上記のプログラムでは、int r=pop();…push(l+r); で記載しているが、
push( pop() + pop() ) ;とは移植性を考慮して書かなかった。理由を述べよ。
最初の関数電卓
初期の関数電卓では複雑な数式を計算する際に、演算子の優先順位を扱うのが困難であった。このため、HP社の関数電卓では、式の入力が RPN を用いていた。(HP-10Cシリーズ)
2項演算と構文木
演算子を含む式が与えられたとして、古いコンパイラではそれを逆ポーランド変換して計算命令を生成していた。しかし最近の複雑な言語では、計算式や命令を処理する場合、その式(または文)の構造を表す2分木(構文木)を生成する。。
+ / \ 1 * / \ 2 3
演算子の木のノードで、末端は数値であることに注目し、右枝・左枝がNULLなら数値(data部にはその数値)、それ以外は演算子(data部には演算子の文字コード)として扱うとして、上記の構文木のデータを作る処理と、その構文木の値を計算するプログラムを示す。
struct Tree { int data ; struct Tree* left ; struct Tree* right ; } ; struct Tree* tree_int( int x ) // 数値のノード { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->data = x ; n->left = n->right = NULL ; } return n ; } struct Tree* tree_op( int op , // 演算子のノード struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { // ~~~~~~~~~~~~~~~~~~~~~(D) n->data = op ; n->left = l ; n->right = r ; } return n ; } // 与えられた演算子の木を計算する関数 int eval( struct Tree* p ) { if ( p->left == NULL && p->right == NULL ) { // 数値のノードは値を返す return p->data ; } else { // 演算子のノードは、左辺値,右辺値を求め // その計算結果を返す switch( p->data ) { case '+' : return eval( p->left ) + eval( p->right ) ; case '*' : return eval( p->left ) * eval( p->right ) ; } // ~~~~~~~~~~~~~~~(E) ~~~~~~~~(F) } } void main() { struct Tree* exp = // 1+(2*3) の構文木を生成 tree_op( '+' , tree_int( 1 ) , tree_op( '*' , tree_int( 2 ) , tree_int( 3 ) ) ) ; printf( "%d¥n" , eval( exp ) ) ; }
理解度確認
- push(),pop() のスタックは、保存と取り出しの順序を表す単語の頭文字4つを使って何と呼ばれるか?
- 上記プログラム中の(A)~(F)の型を答えよ。
コンパイラの技術と関数電卓プログラム(1-2)
前回の実験資料では、再帰下降パーサについて説明し、サンプルプログラムを示した。
演算子の左結合・右結合
ここで、プログラムの実際の動きについて考えてみる。前回の乗除式の BNF 記法による定義は以下のようであった。
exp_乗徐式 ::= DIGIT '*' exp_乗徐式 | DIGIT '/' exp_乗徐式 | DIGIT ;
このBNFによる文法において、1*2*3 を考えると、以下のように解析がすすむ。
しかし、これでは 1*(2*3) であり、右結合にて処理が行われたことになる。
exp_乗徐式 /|\ DIGIT| exp_乗徐式 | | /|\ | |DIGIT| exp_乗徐式 | | | | | | | | | DIGIT | | | | | 1 * 2 * 3
左結合とするには
これをC言語で一般的な、(1*2)*3 といった左結合の処理になるように、BNF 記法の文法を下記のように書き換えるかもしれない。
exp_乗徐式 ::= exp_乗徐式 '*' DIGIT | exp_乗徐式 '/' DIGIT | DIGIT ;
しかし、このBNF記法をそのまま下記のような再帰に置き換えると、再帰が無限に続き異常終了してしまう。
int exp_MUL_DIV( ... ) { int left = exp_MUL_DIV( ... ) ; if ( **endp == '*' ) { (*endp)++ ; if ( isdigit( **endp ) ) { int right = **endp - '0' ; (*endp)++ ; return left + right ; } } else ... : }
左結合のプログラムにする場合は、BNF記法の処理を杓子定規に再帰プログラムで記述する必要はない。
空白除去
プログラム中の空白を無視するのであれば、以下のような補助関数を作っておくと便利かな。使い方は考えること。
void skip( char**ppc ) { while( isspace( **ppc ) ) (*ppc)++ ; }
意思決定木と構文解析
前回までの授業で2分探索木の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木と構文木を紹介する。
意思決定木
意思決定木の説明ということで、yes/noクイズの例を示しながら、2分木になっていることを 説明しプログラムを紹介。
((意思決定木の例:うちの子供が発熱した時)) 38.5℃以上の発熱がある? no/ \yes 元気がある? むねがひいひい? yes/ \no no/ \yes 様子をみる 氷枕で病院 解熱剤で病院 速攻で病院
このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。これは2分木と同じであり、このような処理は以下のように記述ができる。
struct Tree { char *qa ; struct Tree* yes ; struct Tree* no ; } ; struct Tree* dtree( char *s , struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->qa = s ; n->yes = l ; n->no = r ; } return n ; } void main() { struct Tree* p = dtree( "38.5℃以上の発熱がある?" , dtree( "胸がひぃひぃ?" , dtree( "速攻で病院",NULL,NULL ) , dtree( "解熱剤で病院",NULL,NULL ) ) , dtree( "元気がある?" , dtree( "様子をみる",NULL,NULL ) , dtree( "氷枕で病院",NULL,NULL ) ) ) ; // 決定木をたどる struct Tree* d = p ; while( d->yes != NULL || d->no != NULL ) { printf( "%s¥n" , d->qa ) ; scanf( "%d" , &ans ) ; // 回答に応じてyes/noの枝に進む。 if ( ans == 1 ) // yesを選択 d = d->yes ; else if ( ans == 0 ) // noを選択 d = d->no ; } // 最終決定を表示 printf( "%s¥n" , d->qa ) ; }
コンパイラと言語処理系
2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:翻訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:通訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
最初のC++の実装では、C++をトランスレータにかけてC言語を生成し、C言語のコンパイラで動かしていた。
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ
- ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
- エミュレーター
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
近々の例であれば、AppleのARMベースM1チップで intel CPU の動きを真似て動作させる Rosetta2 がトピック。パソコンで古いファミコンのソフトを動かすといった技術もエミュレータ。- 同じCPUで異なるOSを動かす場合は、CPU仮想化。
- 異なるCPUのコンピュータで、システムの動作や機能を模倣して動かすシステム。
に分けられる。
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(token)に分解 - 構文解析(syntax analysys)
tokenの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コードとして出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。
通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) <表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) <加算式> ::= <乗算式> '+' <乗算式> | <乗算式> '-' <乗算式> | <乗算式> ; <乗算式> ::= <数字> '*' <乗算式> | <数字> '/' <乗算式> | <数字> ; <数字> ::= [0-9]+ ;
上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。
意思決定木と構文解析
前回までの授業で2分探索木の説明をしてきたが、このデータ構造は他のデータを扱う際にも用いられる。ここで、意思決定木と構文木を紹介する。
意思決定木
意思決定木の説明ということで、yes/noクイズの例を示す。これは2分木であり、質問を繰り返し最後に答えを示すのであれば、以下のようなプログラムになるであろう。
((意思決定木の例:うちの子供が発熱した時)) 38.5℃以上の発熱がある? no/ \yes 元気がある? むねがひいひい? yes/ \no no/ \yes 様子をみる 氷枕で病院 解熱剤で病院 速攻で病院
このような判断を行うための情報は、yesの木 と noの木の2つの枝を持つデータである。また、各ノードは質問のための文字列を持ち、末端のノードでは質問への回答の文字列となる。
struct Tree { char *qa ; struct Tree* yes ; struct Tree* no ; } ; struct Tree* dtree( char *s , struct Tree* l , struct Tree* r ) { struct Tree* n ; n = (struct Tree*)malloc( sizeof( struct Tree ) ) ; if ( n != NULL ) { n->qa = s ; n->yes = l ; n->no = r ; } return n ; } void main() { struct Tree* p = dtree( "38.5℃以上の発熱がある?" , dtree( "胸がひぃひぃ?" , dtree( "速攻で病院",NULL,NULL ) , dtree( "解熱剤で病院",NULL,NULL ) ) , dtree( "元気がある?" , dtree( "様子をみる",NULL,NULL ) , dtree( "氷枕で病院",NULL,NULL ) ) ) ; // 決定木をたどる struct Tree* d = p ; while( d->yes != NULL || d->no != NULL ) { printf( "%s¥n" , d->qa ) ; scanf( "%d" , &ans ) ; // 回答に応じてyes/noの枝に進む。 if ( ans == 1 ) // yesを選択 d = d->yes ; else if ( ans == 0 ) // noを選択 d = d->no ; } // 最終決定を表示 printf( "%s¥n" , d->qa ) ; }
コンパイラと言語処理系
2分木の応用の構文木について、この後説明を行うが、構文木を使うコンパイラなどの一般知識を事前に説明しておく。
高級言語で書かれたプログラムを計算機で実行するソフトウェアは、言語処理系と呼ばれる。その実行形式により
- インタプリタ(interpreter:翻訳)
- ソースプログラムの意味を解析しながら、その意味に沿った処理を行う
- コンパイラ(compiler:通訳)
- ソースプログラムから機械語を生成し、実行する際には機械語を実行
- トランスコンパイラ
- ソースから他の言語のソースコードを生成し、それをさらにコンパイルし実行
- バイトコードインタプリタ
- ソースからバイトコード(機械語に近いコードを生成)、実行時にはバイトコードの命令に沿った処理を行う
に分けられる。
コンパイラが命令を処理する際には、以下の処理が行われる。
- 字句解析(lexical analysys)
文字列を言語要素(トークン: token)に分解 - 構文解析(syntax analysys)
トークンの並び順に意味を反映した構造を生成 - 意味解析(semantics analysys)
命令に合わせた中間コードを生成 - 最適化(code optimization)
中間コードを変形して効率よいプログラムに変換 - コード生成(code generation)
実際の命令コードとして出力
バイトコードインタプリタとは
例年だと説明していなかったけど最近利用されるプログラム言語の特徴を説明。
通常、コンパイラとかインタプリタの説明をすると、Java がコンパイラとか、JavaScript はインタプリタといった説明となる。しかし、最近のこういった言語がどのように処理されるのかは、微妙である。
(( Java の場合 )) foo.java (ソースコード) ↓ Java コンパイラ foo.class (中間コード) ↓ JRE(Java Runtime Engine)の上で 中間コードをインタプリタ方式で実行
あらかじめコンパイルされた中間コードを、JREの上でインタプリタ的に実行するものは、バイトコードインタプリタ方式と呼ぶ。
ただし、JRE でのインタプリタ実行では遅いため、最近では JIT コンパイラ(Just-In-Time Compiler)により、中間コードを機械語に変換してから実行する。
また、JavaScriptなどは(というか最近のインタプリタの殆どPython,PHP,Perl,…は)、一般的にはインタプリタに分類されるが、実行開始時に高級言語でかかれたコードから中間コードを生成し、そのバイトコードをインタプリタ的に動かしている。
しかし、インタプリタは、ソースコードがユーザの所に配布されて実行するので、プログラムの内容が見られてしまう。プログラムの考え方が盗まれてしまう。このため、変数名を短くしたり、空白を除去したり(…部分的に暗号化したり)といった難読化を行うのが一般的である。
トークンと正規表現(字句解析)
規定されたパターンの文字列を表現する方法として、正規表現(regular expression)が用いられる。
((正規表現の書き方)) 選言 「abd|acd」は、abd または acd にマッチする。 グループ化 「a(b|c)d」は、真ん中の c|b をグループ化 量化 パターンの後ろに、繰り返し何回を指定 ? 直前パターンが0個か1個 「colou?r」 * 直前パターンが0個以上繰り返す 「go*gle」は、ggle,gogle,google + 直前パターンが1個以上繰り返す 「go+gle」は、gogle,google,gooogle
正規表現は、sed,awk,Perl,PHPといった文字列処理の得意なプログラム言語でも利用できる。こういった言語では、以下のようなパターンを記述できる。
[文字1-文字2...] 文字コード1以上、文字コード2以下 「[0-9]+」012,31415,...数字の列 ^ 行頭にマッチ $ 行末にマッチ ((例)) [a-zA-Z_][a-zA-Z_0-9]* C言語の変数名にマッチする正規表現
構文とバッカス記法
言語の文法を表現する時、バッカス記法(BNF)が良く使われる。
((バッカス記法)) <表現> ::= <表現1...> | <表現2...> | <表現3...> | ... ;
例えば、加減乗除記号と数字だけの式の場合、以下の様なBNFとなる。
((加減乗除式のバッカス記法)) <加算式> ::= <乗算式> '+' <乗算式> | <乗算式> '-' <乗算式> | <乗算式> ; <乗算式> ::= <数字> '*' <乗算式> | <数字> '/' <乗算式> | <数字> ; <数字> ::= [0-9]+ ;
# 上記のバッカス記法には、間違いがある。”1+2+3″を正しく認識できない。
# どこが間違っているだろうか?
このような構文が与えられた時、”1+23*456″と入力されたものを、“1,+,23,*,456”と区切る処理が、字句解析である。
また、バッカス記法での文法に合わせ、以下のような構文木を生成するのが構文解析である。
+ / \ 1 * / \ 23 456
理解度確認
- インタプリタ方式で、処理速度が遅い以外の欠点をあげよ。
- 情報処理技術者試験の正規表現,BNF記法問題にて理解度を確認せよ。